
Getting Started with Java™

V E R SI O N 8

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

JBuilder®

Refer to the file deploy.html located in the redist directory of your JBuilder product for a complete list of files that
you can distribute in accordance with the JBuilder License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

COPYRIGHT © 1997–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. All other marks are the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your JBuilder product CD.

Printed in the U.S.A.

JBE0080WW21000gsjava 4E4R1002
0203040506-9 8 7 6 5 4 3 2 1
PDF

i

Chapter 1
Introduction 1-1

Chapter 2
Java language elements 2-1
Terms . 2-1

Identifier. 2-1
Data type . 2-2

Primitive data types 2-2
Composite data types 2-3

Strings . 2-3
Arrays . 2-4
Variable . 2-4
Literal . 2-4

Applying concepts 2-5
Declaring variables. 2-5
Methods . 2-5

Chapter 3
Java language structure 3-1
Terms . 3-1

Keywords . 3-1
Operators . 3-2
Comments. 3-3
Statements. 3-5
Code blocks 3-5
Understanding scope 3-5

Applying concepts 3-7
Using operators. 3-7

Arithmetic operators 3-7
Logical operators 3-9
Assignment operators 3-10
Comparison operators 3-11
Bitwise operators 3-11
?:, the ternary operator. 3-12

Using methods 3-13
Using arrays. 3-13
Using constructors 3-14
Member access 3-15

Arrays .3-15

Chapter 4
Java language control 4-1
Terms . 4-1

String handling 4-1
Type casting and conversion 4-2
Return types and statements 4-3
Flow control statements 4-3

Applying concepts 4-4
Escape sequences 4-4

Strings. . 4-4
Determining access 4-5
Handling methods 4-7
Using type conversions 4-8

Implicit casting. 4-8
Explicit conversion 4-8
Flow control 4-9

Loops . 4-9
Loop control statements. 4-11

Conditional statements 4-12
Handling exceptions 4-13

Chapter 5
The Java class libraries 5-1
Java 2 Platform editions 5-1

Standard Edition. 5-2
Enterprise Edition 5-2
Micro Edition 5-2

Java 2 Standard Edition packages 5-3
The Language package: java.lang 5-4
The Utility package: java.util. 5-5
The I/O package: java.io 5-5
The Text package: java.text 5-5
The Math package: java.math 5-6
The AWT package: java.awt 5-6
The Swing package: javax.swing 5-6
The Javax packages: javax 5-7
The Applet package: java.applet. 5-7
The Beans package: java.beans. 5-8
The Reflection package: java.lang.reflect . . . 5-9
XML processing 5-9
The SQL package: java.sql 5-10
The RMI package: java.rmi 5-10
The Networking package: java.net 5-11
The Security package: java.security 5-11

Contents

ii

Chapter 6
Object-oriented programming in

Java 6-1
Classes . 6-2

Declaring and instantiating classes. 6-2
Data members 6-2
Class methods 6-3
Constructors and finalizers 6-3
Case study: A simple OOP example 6-4
Class inheritance 6-8

Calling the parent’s constructor 6-11
Access modifiers 6-11

Access from within class’s package 6-12
Access outside of a package 6-12

Accessor methods 6-12
Abstract classes6-16

Polymorphism 6-17
Using interfaces. 6-17
Adding two new buttons 6-21
Running your application6-23

Java packages. 6-24
The import statement 6-24
Declaring packages. 6-24

Chapter 7
Threading techniques 7-1
The lifecycle of a thread 7-1

Customizing the run() method 7-2
Subclassing the Thread class 7-2
Implementing the Runnable interface . . 7-3

Defining a thread 7-5
Starting a thread 7-5
Making a thread not runnable 7-6
Stopping a thread. 7-6

Thread priority 7-7
Time slicing 7-7

Synchronizing threads. 7-7
Thread groups 7-8

Chapter 8
Serialization 8-1
Why serialize? 8-1
Java serialization 8-2

Using the Serializable interface 8-2
Using output streams 8-4

ObjectOutputStream methods 8-5

Using input streams 8-5
ObjectInputStream methods 8-7

Writing and reading object streams 8-7

Chapter 9
An introduction to the
Java Virtual Machine 9-1

Java VM security 9-3
The security model 9-3

The Java verifier 9-3
The Security Manager and the

java.security Package 9-4
The class loader 9-6

What about Just-In-Time compilers? 9-6

Chapter 10
Working with the Java Native
Interface (JNI) 10-1

How JNI works 10-2
Using the native keyword 10-2
Using the javah tool. 10-3

Chapter 11
Java language quick reference 11-1
Java 2 platform editions 11-1
Java class libraries. 11-1
Java keywords. 11-2

Data and return types and terms 11-3
Packages, classes, members, and

interfaces 11-3
Access modifiers. 11-4
Loops and flow controls 11-4
Exception handling 11-5
Reserved . 11-5

Converting and casting data types 11-5
Primitive to primitive 11-6
Primitive to String. 11-7
Primitive to reference 11-8
String to primitive11-10
Reference to primitive 11-12
Reference to reference. 11-14

Escape sequences11-19

iii

Operators . 11-20
Basic operators 11-20
Arithmetic operators 11-21
Logical operators 11-21
Assignment operators 11-22
Comparison operators 11-22
Bitwise operators 11-23
Ternary operator 11-23

Chapter 12
Learning more about Java 12-1
Online glossaries 12-1
Books . 12-2

Index I-1

iv

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

Java is an object-oriented programming language. Switching to
object-oriented programming (OOP) from other programming paradigms
can be difficult. Java focuses on creating objects (data structures or
behaviors) that can be assessed and manipulated by the program.

Like other programming languages, Java provides support for reading
and writing data to and from different input and output devices. Java uses
processes that increase the efficiency of input/output, facilitate
internationalization, and provide better support for non-UNIX platforms.
Java looks over your program as it runs and automatically deallocates
memory that is no longer required. This means you don’t have to keep
track of memory pointers or manually deallocate memory. This feature
means a program is less likely to crash and that memory can’t be
intentionally misused.

This book is intended to serve programmers who use other languages as a
general introduction to the Java programming language. The Borland
Community site provides an annotated list of books on Java programming
and related subjects at http://community.borland.com/books/java/0,1427,c|
3,00.html. Examples of applications, APIs, and code snippets are at
http://codecentral.borland.com/codecentral/ccweb.exe/home.

1-2 G e t t i n g S t a r t e d w i t h J a v a

I n t r o d u c t i o n

This book includes the following chapters:

• Java syntax: Chapter 2, “Java language elements,” Chapter 3, “Java
language structure,” and Chapter 4, “Java language control.”
These three chapters define basic Java syntax and introduce you to
object-oriented programming concepts. Each section is divided into
two main parts: “Terms” and “Applying concepts.” “Terms” builds
vocabulary, adding to concepts you already understand. “Applying
concepts” demonstrates the use of concepts presented up to that point.
Some concepts are revisited several times, at increasing levels of
complexity.

• Chapter 5, “The Java class libraries”

This chapter presents an overview of the Java 2 class libraries and the
Java 2 Platform editions.

• Chapter 6, “Object-oriented programming in Java”

This chapter introduces the object-oriented features of Java. You will
create Java classes, instantiate objects, and access member variables in a
short tutorial. You will learn to use inheritance to create new classes,
use interfaces to add new capabilities to your classes, use
polymorphism to make related classes respond in different ways to the
same message, and use packages to group related classes together.

• Chapter 7, “Threading techniques”

A thread is a single sequential flow of control within a program. One of
the powerful aspects of the Java language is you can easily program
multiple threads of execution to run concurrently within the same
program. This chapter explains how to create multithreaded programs,
and provides links to other resources with more in-depth information.

• Chapter 8, “Serialization”

Serialization saves and restores a Java object’s state. This chapter
describes how to serialize objects using Java. It describes the
Serializable interface, how to write an object to disk, and how to read
the object back into memory again.

• Chapter 9, “An introduction to the Java Virtual Machine”

The JVM is the native software that allows a Java program to run on a
particular machine. This chapter explains the JVM’s general structure
and purpose. It discusses the major roles of the JVM, particularly in
Java security. It goes into more detail about three specific security
features: the Java verifier, the Security Manager, and the Class Loader.

I n t r o d u c t i o n 1-3

I n t r o d u c t i o n

• Chapter 10, “Working with the Java Native Interface (JNI)”

This chapter explains how to invoke native methods in Java applications
using the Java Native Method Interface (JNI). It begins by explaining how
the JNI works, then discusses the native keyword and how any Java
method can become a native method. Finally, it examines the JDK’s javah
tool, which is used to generate C header files for Java classes.

• Chapter 11, “Java language quick reference”

This chapter contains a partial list of class libraries and their main
functions, a list of the Java2 platform editions, a complete list of Java
keywords as of JDK 1.3, extensive tables of data type conversions
between primitive and reference types, Java escape sequences, and
extensive tables of operators and their actions.

1-4 G e t t i n g S t a r t e d w i t h J a v a

J a v a l a n g u a g e e l e m e n t s 2-1

C h a p t e r

2
Chapter2Java language elements

This section provides you with foundational concepts about the elements
of the Java programming language that will be used throughout this
chapter. It assumes you understand general programming concepts, but
have little or no experience with Java.

Terms
The following terms and concepts are discussed in this chapter:

• “Identifier” on page 2-1

• “Data type” on page 2-2

• “Strings” on page 2-3

• “Arrays” on page 2-4

• “Variable” on page 2-4

• “Literal” on page 2-4

Identifier

The identifier is the name you choose to call an element (such as a variable
or a method). Java will accept any valid identifier, but for reasons of
usability, it’s best to use a plain-language term that’s modified to meet the
following requirements:

• It should start with a letter. Strictly speaking, it can begin with a
Unicode currency symbol or an underscore (_), but some of these
symbols may be used in imported files or internal processing. They are
best avoided.

2-2 G e t t i n g S t a r t e d w i t h J a v a

T e r m s

• After that, it may contain any alphanumeric characters (letters or
numbers), underscores, or Unicode currency symbols (such as pound
sterling or $), but no other special characters.

• It must be all one word (no spaces or hyphens).

Capitalization of an identifier depends on the kind of identifier it is. Java is
case-sensitive, so be careful of capitalization. Correct capitalization styles
are mentioned in context.

Data type

Data types classify the kind of information that certain Java programming
elements can contain. Data types fall into two main categories:

• Primitive or basic

• Composite or reference

Naturally, different kinds of data types can hold different kinds and
amounts of information. You can convert the data type of a variable to a
different type, within limits: you cannot cast to or from the boolean type,
and you cannot cast an object to an object of an unrelated class.

Java will prevent you from risking your data. This means it will easily let
you convert a variable or object to a larger type, but will try to prevent you
from converting it to a smaller type. When you change a data type with a
larger capacity to one with a smaller capacity, you must use a type of
statement called a type cast.

Primitive data types
Primitive, or basic, data types are classified as Boolean (specifying an on/
off state), character (for single characters and Unicode characters), integer
(for whole numbers), or floating-point (for decimal numbers). In code,
primitive data types are all lower case.

The Boolean data type is called boolean, and takes one of two values: true
or false. Java doesn’t store these values numerically, but uses the boolean
data type to store these values.

The character data type is called char and takes single Unicode characters
with values up to 16 bits long. In Java, Unicode characters (letters, special
characters, and punctuation marks) are put between single quotation
marks: 'b'. Java’s Unicode default value is \u0000, ranging from \u0000 to
\uFFFF.

Briefly, the Unicode numbering system takes numbers from 0 to 65535,
but the numbers must be specified in hexadecimal notation, preceded by
the escape sequence \u.

J a v a l a n g u a g e e l e m e n t s 2-3

T e r m s

Not all special characters can be represented in this way. Java provides its
own set of escape sequences, many of which can be found in the table of
“Escape sequences” on page 11-19.

In Java, the size of primitive data types is absolute, rather than platform-
dependent. This improves portability.

Different numeric data types take different kinds and sizes of numbers.
Their names and capacities are listed below:

Composite data types
Each of the data types above accepts one number, one character, or one
state. Composite, or reference, data types consist of more than a single
element. Composite data types are of two kinds: classes and arrays. Class
and array names start with an upper case letter and are camel-capitalized
(that is, the first letter of each natural word is capitalized within the name,
for instance, NameOfClass).

A class is a complete and coherent piece of code that defines a logically
unified set of objects and their behavior. For more information on classes,
see Chapter 6, “Object-oriented programming in Java.”

Any class can be used as a data type once it has been created and imported
into the program. Because the String class is the class most often used as a
data type, we will focus on it in this chapter.

Strings

The String data type is actually the String class. The String class stores any
sequence of alphanumeric characters, spaces, and normal punctuation
(termed strings), enclosed in double quotes. Strings can contain any of the
Unicode escape sequences and require \" to put double quotes inside of a
string, but, generally, the String class itself tells the program how to
interpret the characters correctly.

Type Attributes Range

double Java’s default. A floating-point type that takes an 8-
byte number to about fifteen decimal places.

+/- 9.00x1018

int Most common option. An integer type that takes a 4-
byte whole number.

+/- 2x109

long An integer type that takes an 8-byte whole number. +/- 9x1018

float A floating-point type that takes a 4-byte number to
about seven decimal places.

+/- 2.0x109

short An integer type that takes a 2-byte whole number. +/- 32768

byte An integer type that takes a 1-byte whole number. +/- 128

2-4 G e t t i n g S t a r t e d w i t h J a v a

T e r m s

Arrays

An array is a data structure containing a group of values of the same data
type. For instance, an array can accept a group of String values, a group of
int values, or a group of boolean values. As long as all of the values are of
the same data type, they can go into the same array.

Arrays are characterized by a pair of square brackets. When you declare
an array in Java, you can put the brackets either after the identifier or after
the data type:

int studentID[];
char[] grades;

Note that the array size is not specified. Declaring an array does not
allocate memory for that array. In most other languages the array’s size
must be included in its declaration, but in Java you don’t specify its size
until you use it. Then the appropriate memory is allocated.

Variable

A variable is a value that a programmer names and defines. Variables
need an identifier and a value.

Literal

A literal is the actual representation of a number, a character, a state, or a
string. A literal represents the value of an identifier.

Alphanumeric literals include strings in double quotes, single char
characters in single quotes, and boolean true/false values.

Integer literals may be stored as decimals, octals, or hexadecimals, but
think about your syntax: any integer with a leading 0 (as in a date) will be
interpreted as an octal. Floating point literals can only be expressed as
decimals. They will be treated as double unless you specify the type.

For a more detailed explanation of literals and their capacities, see The Java
Handbook by Patrick Naughton.

J a v a l a n g u a g e e l e m e n t s 2-5

A p p l y i n g c o n c e p t s

Applying concepts
The following sections demonstrate how to apply the terms and concepts
introduced earlier in this chapter.

Declaring variables

The act of declaring a variable sets aside memory for the variable you
declare. Declaring a variable requires only two things: a data type and an
identifier, in that order. The data type tells the program how much
memory to allocate. The identifier labels the allocated memory.

Declare the variable only once. Once you have declared the variable
appropriately, just refer to its identifier in order to access that block of
memory.

Variable declarations look like this:

Methods

Methods in Java are equivalent to functions or subroutines in other
languages. The method defines an action to be performed on an object.

Methods consist of a name and a pair of parentheses:

getData()

Here, getData is the name and the parentheses tell the program that it is a
method.

boolean isOn; The data type boolean can be set to true or
false. The identifier isOn is the name that the
programmer has given to the memory
allocated for this variable. The name isOn has
meaning for the human reader as something
that would logically accept true/false values.

int studentsEnrolled; The data type int tells you that you will be
dealing with a whole number of less than ten
digits. The identifier studentsEnrolled suggests
what the number will signify. Since students
are whole people, the appropriate data type
calls for whole numbers.

float creditCardSales; The data type float is appropriate because
money is generally represented in decimals.
You know that money is involved because the
programmer has usefully named this variable
creditCardSales.

2-6 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

If the method needs particular information in order to get its job done,
what it needs goes inside the parentheses. What’s inside the parentheses is
called the argument, or arg for short. In a method declaration, the arg must
include a data type and an identifier:

drawString(String remark)

Here, drawString is the name of the method, and String remark is the data
type and variable name for the string that the method must draw.

You must tell the program what type of data the method will return, or if
it will return anything at all. This is called the return type. You can make a
method return data of any primitive type. If the method doesn’t need to
return anything (as in most action-performing methods), the return type
must be void.

Return type, name, and parentheses with any needed args give a very
basic method declaration:

String drawString(String remark);

Your method is probably more complex than that. Once you have typed
and named it and told it what args it will need (if any), you must define it
completely. You do this below the method name, nesting the body of the
definition in a pair of curly braces. This gives a more complex method
declaration:

String drawString(String remark) { //Declares the method.
 String remark =
 "My, what big teeth you have!" //Defines what's in the method.
} //Closes the method body.

Once you have defined the method, you only need to refer to it by its
name and pass it any args it needs to do its job right then:
drawString(remark);

J a v a l a n g u a g e s t r u c t u r e 3-1

C h a p t e r

3
Chapter3Java language structure

This section provides you with foundational concepts about the structure
of the Java programming language that will be used throughout this
chapter. It assumes you understand general programming concepts, but
have little or no experience with Java.

Terms
The following terms and concepts are discussed in this chapter:

• “Keywords” on page 3-1

• “Operators” on page 3-2

• “Comments” on page 3-3

• “Statements” on page 3-5

• “Code blocks” on page 3-5

• “Understanding scope” on page 3-5

Keywords

Keywords are reserved Java terms that modify other syntax elements.
Keywords can define an object’s accessibility, a method’s flow, or a
variable’s data type. Keywords can never be used as identifiers.

Many of Java’s keywords are borrowed from C/C++. Also, as in C/C++,
keywords are always written in lowercase. Generally speaking, Java’s

3-2 G e t t i n g S t a r t e d w i t h J a v a

T e r m s

keywords can be categorized according to their functions (examples are in
parentheses):

• Data and return types and terms (int, void, return)

• Package, class, member, and interface (package, class, static)

• Access modifiers (public, private, protected)

• Loops and loop controls (if, switch, break)

• Exception handling (throw, try, finally)

• Reserved words — not used yet, but unavailable (goto, const)

Some keywords are discussed in context in these chapters. For a complete
list of keywords and what they mean, see “Java keywords” on page 11-2.

Operators

Operators allow you to access, manipulate, relate, or refer to Java
language elements, from variables to classes. Operators have properties of
precedence and associativity. When several operators act on the same
element (or operand), the operators’ precedence determines which
operator will act first. When more than one operator has the same
precedence, the rules of associativity apply. These rules are generally
mathematical; for instance, operators will usually be used from left to
right, and operator expressions inside parentheses will be evaluated
before operator expressions outside parentheses.

Operators generally fall into six categories: assignment, arithmetic, logical,
comparison, bitwise, and ternary.

Assignment means storing the value to the right of the = inside the variable
to the left of it. You can either assign a value to a variable when you declare
it or after you have declared it. The machine doesn’t care; you decide
which way makes sense in your program and your practice:

double bankBalance; //Declaration
bankBalance = 100.35; //Assignment
double bankBalance = 100.35; //Declaration with assignment

In both cases, the value of 100.35 is stored inside the memory reserved by
the declaration of the bankBalance variable.

Assignment operators allow you to assign values to variables. They also
allow you to perform an operation on an expression and then assign the
new value to the right-hand operand, using a single combined expression.

Arithmetic operators perform mathematical calculations on both integer
and floating-point values. The usual mathematical signs apply: + adds,
- subtracts, * multiplies, and / divides two numbers.

J a v a l a n g u a g e s t r u c t u r e 3-3

T e r m s

Logical, or Boolean, operators allow the programmer to group boolean
expressions in a useful way, telling the program exactly how to determine
a specific condition.

Comparison operators evaluate single expressions against other parts of
the code. More complex comparisons (like string comparisons) are done
programmatically.

Bitwise operators act on the individual 0s and 1s of binary digits. Java’s
bitwise operators can preserve the sign of the original number; not all
languages do.

The ternary operator, ?:, provides a shorthand way of writing a very
simple if-then-else statement. The first expression is evaluated; if it’s true,
the second expression is evaluated; if the second expression is false, the
third expression is used.

Below is a partial list of other operators and their attributes:

Comments

Commenting code is excellent programming practice. Good comments
can help you scan your code more quickly, keep track of what you’ve
done as you build a complex program, and remind you of things you

Operator Operand Behavior

. object
member

Accesses a member of the object.

(<type>) data type Casts a data type. 1

1. It’s important to distinguish between operation and punctuation. Parentheses are used
around args as punctuation. They are used around a data type in an operation that
changes a variable’s data type to the one inside the parentheses.

+ String Joins up strings (concatenator).

number Adds.

- number This is the unary2 minus (reverses number sign).

2. A unary operator takes a single operand, a binary operator takes two operands, and a ternary
operator takes three operands.

number Subtracts.

! boolean This is the boolean NOT operator.

& integer,
boolean

This is both the bitwise (integer) and boolean AND
operator. When doubled (&&), it is the boolean
conditional AND.

= most
elements
with
variables

Assigns an element to another element (for instance, a
value to a variable, or a class to an instance). This can
be combined with other operators to perform the
other operation and assign the resulting value. For
instance, += adds the left-hand value to the right, then
assigns the new value to the right-hand side of the
expression.

3-4 G e t t i n g S t a r t e d w i t h J a v a

T e r m s

want to add or tune. You can use comments to hide parts of code that you
want to save for special situations or keep out of the way while you work
on something that might conflict. Comments can help you remember
what you were doing when you return to one project after working on
another, or when you come back from vacation. In a team development
environment or whenever code is passed between programmers,
comments can help others understand the purpose and associations of
everything you comment on, without having to parse out every bit of it to
be sure they understand.

Java uses three kinds of comments: single-line comments, multi-line
comments, and Javadoc comments.

Here are some examples:

/* You can put as many lines of
 discussion or as many pages of
 boilerplate as you like between
 these two tags.
*/

/* Note that, if you really get carried away,
 you can nest single-line comments
 //inside of the multi-line comments
 and the compiler will have no trouble
 with it at all.
*/

Comment Tag Purpose

Single- line // ... Suitable for brief remarks on the function or structure of a
statement or expression. They require only an opening
tag: as soon as you start a new line, you’re back into code.

Multi- line /* ... */ Good for any comment that will cover more than one line,
as when you want to go into some detail about what’s
happening in the code or when you need to embed legal
notices in the code. It requires both opening and closing
tags.

Javadoc /** ... */ This is a multi-line comment that the JDK’s Javadoc utility
can read and turn into HTML documentation. Javadoc
has tags you can use to extend its functionality. It’s used
to provide help for APIs, generate to do lists, and embed
flags in code. It requires both opening and closing tags.
To learn more about the Javadoc tool, go to Sun’s Javadoc
page at http://java.sun.com/j2se/1.3/docs/tooldocs/
javadoc/.

J a v a l a n g u a g e s t r u c t u r e 3-5

T e r m s

/* Just don't try nesting
 /* multi-line types of comments
 */
 /** of any sort
 */
 because that will generate a
 compiler error.
*/

/**Useful information about what the code
 does goes in Javadoc tags. Special tags
 such as @todo can be used here to take
 advantage of Javadoc's helpful features.
*/

Statements

A statement is a single command. One command can cover many lines of
code, but the compiler reads the whole thing as one command. Individual
(usually single-line) statements end in a semicolon (;), and group
(multi-line) statements end in a closing curly brace (}). Multi-line
statements are generally called code blocks.

By default, Java runs statements in the order in which they’re written, but
Java allows forward references to terms that haven’t been defined yet.

Code blocks

A code block is everything between the curly braces, and includes the
expression that introduces the curly brace part:

class GettingRounder {
 ...
}

Understanding scope

Scope rules determine where in a program a variable is recognized.
Variables fall into two main scope categorizes:

• Global variables: Variables that are recognized across an entire class.

• Local variables: Variables that are recognized only in the code block
where they were declared.

3-6 G e t t i n g S t a r t e d w i t h J a v a

T e r m s

Scope rules are tightly related to code blocks. The one general scope rule
is: a variable declared in a code block is visible only in that block and any
blocks nested inside it. The following code illustrates this:

class Scoping {
 int x = 0;
 void method1() {
 int y;
 y = x; // This works. method1 can access y.
 }
 void method2() {
 int z = 1;
 z = y; // This does not work:
 // y is defined outside method2's scope.
 }
}

This code declares a class called scoping, which has two methods: method1()
and method2(). The class itself is considered the main code block, and the
two methods are its nested blocks.

The x variable is declared in the main block, so it is visible (recognized by
the compiler) in both method1() and method2(). Variables y and z, on the
other hand, were declared in two independent, nested blocks; therefore,
attempting to use y in method2() is illegal since y is not visible in that block.

Note A program that relies on global variables can be error-prone for two
reasons:

1 Global variables are difficult to keep track of.

2 A change to a global variable in one part of the program can have an
unexpected side effect in another part of the program.

Local variables are safer to use since they have a limited life span. For
example, a variable declared inside a method can be accessed only from
that method, so there is no danger of it being misused somewhere else in
the program.

End every simple statement with a semicolon. Be sure every curly brace
has a mate. Organize your curly braces in some consistent way (as in the
examples above) so you can keep track of the pairs. Many Java IDEs (such
as JBuilder) automatically nest the curly braces according to your settings.

J a v a l a n g u a g e s t r u c t u r e 3-7

A p p l y i n g c o n c e p t s

Applying concepts
The following sections demonstrate how to apply the terms and concepts
introduced earlier in this chapter.

Using operators

Review There are six basic kinds of operators (arithmetic, logical, assignment,
comparison, bitwise, and ternary), and operators affect one, two, or three
operands, making them unary, binary, or ternary operators. They have
properties of precedence and associativity, which determine the order
they’re processed in.

Operators are assigned numbers that establish their precedence. The
higher the number, the higher the order of precedence (that is, the more
likely it is to be evaluated sooner than others). An operator of precedence
1 (the lowest) will be evaluated last, and an operator with a precedence of
15 (the highest) will be evaluated first.

Operators with the same precedence are normally evaluated from left to
right.

Precedence is evaluated before associativity. For instance, the expression a
+ b - c * d will not be evaluated from left to right; multiplication has
precedence over addition, so c * d will be evaluated first. Addition and
subtraction have the same order of precedence, so associativity applies: a
and b will be added first, then that sum will be subtracted from the
product of c * d.

It’s good practice to use parentheses around mathematical expressions
you want evaluated first, regardless of their precedence, for instance: (a +
b) - (c * d). The program will evaluate this operation the same way, but
for the human reader, this format is clearer.

Arithmetic operators
Java provides a full set of operators for mathematical calculations. Java,
unlike some languages, can perform mathematical functions on both
integer and floating-point values. You will probably find these operators
familiar.

3-8 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

Here are the arithmetic operators:

Use pre- or post-increment/decrement depending on when you want the
new value to be assigned:

int y = 3, x; //1. variable declarations
int b = 9; //2.
int a; //3.
x = ++y; //4. pre-increment
a = b--; //5. post-decrement

In statement 4, pre-increment, the y variable’s value is incremented by 1,
and then its new value (4) is assigned to x. Both x and y originally had a
value of 3; now they both have the value of 4.

In statement 5, post-decrement, b’s current value (9) is assigned to a and then
the value of b is decremented (to 8). b originally had a value of 9 and a had
no value assigned; now a is 9 and b is 8.

The modulus operator requires an explanation to those who last studied
math a long time ago. Remember that when you divide two numbers, they
rarely divide evenly. What is left over after you have divided the numbers
(without adding any new decimal places) is the remainder. For instance, 3
goes into 5 once, with 2 left over. The remainder (in this case, 2) is what
the modulus operator evaluates for. Since remainders recur in a division
cycle on a predictable basis (for instance, an hour is modulus 60), the
modulus operator is particularly useful when you want to tell a program to
repeat a process at specific intervals.

Operator Definition Prec. Assoc.

++/-- Auto-increment/decrement: Adds one to, or
subtracts one from, its single operand. If the
value of i is 4, ++i is 5. A pre-increment (++i)
increments the value by one and assigns the
new value to the original variable i. A
post-increment (i++) increments the value but
leaves the original variable i with the original
value. See below for more information.

1 Right

+/- Unary plus/minus: sets or changes the
positive/negative value of a single number.

2 Right

* Multiplication. 4 Left

/ Division. 4 Left

% Modulus: Divides the first operand by the
second operand and returns the remainder. See
below for a brief mathematical review.

4 Left

+/- Addition/subtraction 5 Left

J a v a l a n g u a g e s t r u c t u r e 3-9

A p p l y i n g c o n c e p t s

Logical operators
Logical (or Boolean) operators allow the programmer to group boolean
expressions to determine certain conditions. These operators perform the
standard Boolean operations AND, OR, NOT, and XOR.

The following table lists the logical operators:

The evaluation operators always evaluate both operands. The conditional
operators, on the other hand, always evaluate the first operand, and if that
determines the value of the whole expression, they don’t evaluate the
second operand. For example:

if (!isHighPressure && (temperature1 > temperature2)) {
 ...
} //Statement 1: conditional

boolean1 = (x < y) || (a > b); //Statement 2: conditional

boolean2 = (10 > 5) & (5 > 1); //Statement 3: evaluation

The first statement evaluates !isHighPressure first. If !isHighPressure is false
(that is, if the pressure is high; note the logical double-negative of ! and
false), the second operand, temperature1 > temperature2, doesn’t need to be
evaluated. && only needs one false value in order to know what value to
return.

Operator Definition Prec. Assoc.

! Boolean NOT (unary)
Changes true to false or false to true. Because of its
low precedence, you may need to use parentheses
around this statement.

2 Right

& Evaluation AND (binary)
Yields true only if both operands are true. Always
evaluates both operands.
Rarely used as a logical operator.

9 Left

^ Evaluation XOR (binary)
Yields true if only one operand is true. Evaluates
both operands.

10 Left

| Evaluation OR (binary)
Yields true if one or both of the operands is true.
Evaluates both operands.

11 Left

&& Conditional AND (binary)
Yields true only if both operands are true. Called
“conditional” because it only evaluates the second
operand if the first operand is true.

12 Left

|| Conditional OR (binary)
Yields true if either one or both operands is true;
returns false if both are false. Doesn’t evaluate
second operand if first operand is true.

13 Left

3-10 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

In the second statement, the value of boolean1 will be true if x is less than y.
If x is more than y, the second expression will be evaluated; if a is less than
b, the value of boolean1 will still be true.

In the third statement, however, the compiler will compute the values of
both operands before assigning true or false to boolean2, because & is an
evaluation operator, not a conditional one.

Assignment operators
You know that the basic assignment operator (=) lets you assign a value to
a variable. With Java’s set of assignment operators, you can perform an
operation on either operand and assign the new value to a variable in one
step.

The following table lists assignment operators:

The first operator is familiar by now. The rest of the assignment operators
perform an operation first, and then store the result of the operation in the
operand on the left side of the expression. Here are some examples:

int y = 2;
y *= 2; //same as (y = y * 2)

boolean b1 = true, b2 = false;
b1 &= b2; //same as (b1 = b1 & b2)

Operator Definition Prec. Assoc.

= Assign the value on the right to the variable
on the left.

15 Right

+= Add the value on the right to the value of the
variable on the left; assign the new value to
the original variable.

15 Right

-= Subtract the value on the right from the value
of the variable on the left; assign the new
value to the original variable.

15 Right

*= Multiply the value on the right with the value
of the variable on the left; assign the new
value to the original variable.

15 Right

/= Divide the value on the right from the value of
the variable on the left; assign the new value
to the original variable.

15 Right

J a v a l a n g u a g e s t r u c t u r e 3-11

A p p l y i n g c o n c e p t s

Comparison operators
Comparison operators allow you to compare one value to another.

The following table lists the comparison operators:

The equality operator can be used to compare two object variables of the
same type. In this case, the result of the comparison is true only if both
variables refer to the same object. Here is a demonstration:

m1 = new Mammal();
m2 = new Mammal();
boolean b1 = m1 == m2; //b1 is false

m1 = m2;
boolean b2 = m1 == m2; //b2 is true

The result of the first equality test is false because m1 and m2 refer to
different objects (even though they are of the same type). The second
comparison is true because both variables now represent the same object.

Note Most of the time, however, the equals() method in the Object class is used
instead of the comparison operator. The comparing class must be
subclassed from Object before objects of the comparing class can be
compared using equals().

Bitwise operators
Bitwise operators are of two types: shift operators and Boolean operators.
The shift operators are used to shift the binary digits of an integer to the
right or the left. Consider the following example (the short integer type is
used instead of int for conciseness):

short i = 13; //i is 0000000000001101
i = i << 2; //i is 0000000000110100

In the second line, the bitwise left shift operator shifted all the bits of i two
positions to the left.

Note The shifting operation is different in Java than in C/C++ in how it is used
with signed integers. A signed integer is one whose left-most bit is used to
indicate the integer’s positive or negative sign: the bit is 1 if the integer is
negative, 0 if positive. In Java, integers are always signed, whereas in C/
C++ they are signed only by default. In most implementations of C/C++,

Operator Definition Prec. Assoc.

< Less than 7 Left

> Greater than 7 Left

<= Less than or equal to 7 Left

>= Greater than or equal to 7 Left

== Equal to 8 Left

!= Not equal to 8 Left

3-12 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

a bitwise shift operation does not preserve the integer’s sign; the sign bit
would be shifted out. In Java, however, the shift operators preserve the
sign bit (unless you use the >>> to perform an unsigned shift). This means
that the sign bit is duplicated, then shifted. For example, right shifting
10010011 by 1 is 11001001.

The following table lists Java’s bitwise operators:

?:, the ternary operator
?: is a ternary operator that Java borrowed from C. It provides a handy
shortcut to create a very simple if-then-else kind of statement.

This is the syntax:

<expression 1> ? <expression 2> : <expression 3>;

expression 1 is evaluated first. If it is true, then expression 2 is evaluated. If
expression 2 is false, expression 3 is used. For example:

int x = 3, y = 4, max;
max = (x > y) ? x : y;

Here, max is assigned the value of x or y, depending on which is greater.

Operator Definition Prec. Assoc.

~ Bitwise NOT
Inverts each bit of the operand, so each 0
becomes 1 and vice versa.

2 Right

<< Signed left shift
Shifts the bits of the left operand to the left, by
the number of digits specified in the right
operand, with 0’s shifted in from the right.
High-order bits are lost.

6 Left

>> Signed right shift
Shifts the bits of the left operand to the right,
by the number of digits specified on the right.
If the left operand is negative, 0’s are shifted in
from the left; if it is positive, 1’s are shifted in.
This preserves the original sign.

6 Left

>>> Zero-fill right shift
Shifts right, but always fills in with 0’s.

6 Left

& Bitwise AND
Can be used with = to assign the value.

9 Left

| Bitwise OR
Can be used with = to assign the value.

10 Left

^ Bitwise XOR
Can be used with = to assign the value.

11 Left

<<= Left-shift with assignment 15 Left

>>= Right-shift with assignment 15 Left

>>>= Zero-fill right shift with assignment 15 Left

J a v a l a n g u a g e s t r u c t u r e 3-13

A p p l y i n g c o n c e p t s

Using methods

You know that methods are what get things done. Methods cannot
contain other methods, but they can contain variables and class references.

Here is a brief example to review. This method helps a music store with its
inventory:

//Declare the method: return type, name, args:
public int getTotalCDs(int numRockCDs, int numJazzCDs, in numPopCDs) {
 //Declare the variable totalCDs. The other three variables are
 //declared elsewhere:
 int totalCDs = numRockCDs + numJazzCDs + numPopCDs;
 //Make it do something useful. In this case, print this line on the screen:
 System.out.println("Total CDs in stock = " + totalCDs);
}

In Java, you can define more than one method with the same name, as
long as the different methods require different arguments. For instance,
both public int getTotalCDs(int numRockCDs, int numJazzCDs, in numPopCDs)
and public int getTotalCDs(int salesRetailCD, int salesWholesaleCD) are
legal in the same class. Java will recognize the different patterns of
arguments (the method signatures) and apply the correct method when you
make a call. Assigning the same name to different methods is called
method overloading.

To access a method from other parts of a program, you must first create an
instance of the class the method resides in, and then use that object to call
the method:

//Create an instance totalCD of the class Inventory:
Inventory totalCD = new Inventory();

//Access the getTotalCDs() method inside of Inventory, storing the value in total:
int total = totalCD.getTotalCDs(myNumRockCDs, myNumJazzCDs, myNumPopCDs);

Using arrays

Note that the size of an array is not part of its declaration. The memory an
array requires is not actually allocated until you initialize the array.

To initialize the array (and allocate the needed memory), you must use the
new operator as follows:

int studentID[] = new int[20]; //Creates array of 20 int elements.
char[] grades = new char[20]; //Creates array of 20 char elements.
float[][] coordinates = new float[10][5]; //2-dimensional, 10x5 array of
 //float elements.

Note In creating two-dimensional arrays, the first array number defines
number of rows and the second array number defines number of columns.

3-14 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

Java counts positions starting with 0. This means the elements of a
20-element array will be numbered from 0 to 19: the first element will be 0,
the second will be 1, and so on. Be careful how you count when you’re
working with arrays.

When an array is created, the value of all its elements is null or 0; values
are assigned later.

Note The use of the new operator in Java is similar to that of the malloc command
in C and the new operator in C++.

To initialize an array, specify the values of the array elements inside a set
of curly braces. For multi-dimensional arrays, use nested curly braces. For
example:

char[] grades = {'A', 'B', 'C', 'D', 'F');
float[][] coordinates = {{0.0, 0.1}, {0.2, 0.3}};

The first statement creates a char array called grades. It initializes the
array’s elements with the values 'A' through 'F'. Notice that we did not
have to use the new operator to create this array; by initializing the array,
enough memory is automatically allocated for the array to hold all the
initialized values. Therefore, the first statement creates a char array of 5
elements.

The second statement creates a two-dimensional float array called
coordinates, whose size is 2 by 2. Basically, coordinates is an array
consisting of two array elements: the array’s first row is initialized to 0.0
and 0.1, and the second row to 0.2 and 0.3.

Using constructors

A class is a full piece of code, enclosed in a pair of curly braces, that defines
a logically coherent set of variables, attributes, and actions. A package is a
logically associated set of classes.

Note that a class is just a set of instructions. It doesn’t do anything itself.
It’s analogous to a recipe: you can make a cake from the right recipe, but
the recipe is not the cake, it’s only the instructions for it. The cake is an
object you have created from the instructions in the recipe. In Java, we
would say that we have created an instance of cake from the recipe Cake.

The act of creating an instance of a class is called instantiating that object.
You instantiate an object of a class.

To instantiate an object, use the assignment operator (=), the keyword new,
and a special kind of method called a constructor. A call to a constructor is
the name of the class being instantiated followed by a pair of parentheses.
Although it looks like a method, it takes a class’s name; that’s why it’s
capitalized:

<ClassName> <instanceName> = new <Constructor()>;

J a v a l a n g u a g e s t r u c t u r e 3-15

A p p l y i n g c o n c e p t s

For example, to instantiate a new object of the Geek class and name the
instance thisProgrammer:

Geek thisProgrammer = new Geek();

A constructor sets up a new instance of a class: it initializes all the
variables in that class, making them immediately available. It can also
perform any start-up routines required by the object.

For example, when you need to drive your car, the first thing you do is
open the door, climb in, put the clutch in, and start the engine. (After that,
you can do all the things normally involved in driving, like getting into
gear and using the accelerator.) The constructor handles the
programmatic equivalents of the actions and objects involved in getting in
and starting the car.

Once you have created an instance, you can use the instance name to
access members of that class.

For more information on constructors, see “Case study: A simple OOP
example” on page 6-4.

Member access

The access operator (.) is used to access members inside of an instantiated
object. The basic syntax is:

<instanceName>.<memberName>

Precise syntax of the member name depends on the kind of member.
These can include variables (<memberName>), methods (<memberName>()), or
subclasses (<MemberName>).

You can use this operation inside of other syntax elements wherever you
need to access a member. For example:

setColor(Color.pink);

This method needs a color to do its job. The programmer used an access
operation as an arg to access the variable pink within the class Color.

Arrays
Array elements are accessed by subscripting, or indexing, the array
variable. To index an array variable, follow the array variable’s name with
the element’s number (index) surrounded by square brackets. Arrays are
always indexed starting from 0. If you have an array with 9 elements, the first
element is the 0 index and the last element is the 8 index. (Coding as if
elements were numbered from 1 is a common mistake.)

In the case of multi-dimensional arrays, you must use an index for each
dimension to access an element. The first index is the row and the second
index is the column.

3-16 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

For example:

firstElement = grades[0]; //firstElement = 'A'
fifthElement = grades[4]; //fifthElement = 'F'
row2Col1 = coordinates[1][0]; //row2Col1 = 0.2

The following snippet of code demonstrates one use of arrays. It creates an
array of 5 int elements called intArray, then uses a for loop to store the
integers 0 through 4 in the elements of the array:

int[] intArray = new int [5];
int index;
for (index = 0; index < 5; index++) intArray [index] = index;

This code increments the index variable from 0 to 4, and at every pass, it
stores its value in the element of intArray indexed by the variable index.

J a v a l a n g u a g e c o n t r o l 4-1

C h a p t e r

4
Chapter4Java language control

This section provides you with foundational concepts about control of the
Java programming language that will be used throughout this chapter. It
assumes you understand general programming concepts, but have little or
no experience with Java.

Terms
The following terms and concepts are discussed in this chapter:

• “String handling” on page 4-1

• “Type casting and conversion” on page 4-2

• “Return types and statements” on page 4-3

• “Flow control statements” on page 4-3

String handling

The String class provides methods that allow you to get substrings or to
index characters within a string. However, the value of a declared String
can’t be changed. If you need to change the String value associated with
that variable, you must point the variable to a new value:

String text1 = new String("Good evening."); // Declares text1 and assigns a value.
text1 = "Hi, honey, I'm home!" // Assigns a new value to text1.

Indexing allows you to point to a particular character in a string. Java
counts each position in a string starting from 0, so that the first position is
0, the second position is 1, and so on. This gives the eighth position in a
string an index of 7.

4-2 G e t t i n g S t a r t e d w i t h J a v a

T e r m s

The StringBuffer class provides a workaround. It also offers several other
ways to manipulate a string’s contents. The StringBuffer class stores your
string in a buffer (a special area of memory) whose size you can explicitly
control; this allows you to change the string as much as necessary before
you have to declare a String and make the string permanent.

Generally, the String class is for string storage and the StringBuffer class is
for string manipulation.

Type casting and conversion

Values of data types can be converted from one type to another. Class
values can be converted from one class to another in the same class
hierarchy. Note that conversion does not change the original type of that
value, it only changes the compiler’s perception of it for that one
operation.

Obvious logical restrictions apply. A widening conversion — from a
smaller type to a larger type — is easy, but a narrowing conversion —
converting from a larger type (for instance, double or Mammal) to a smaller
type (for instance, float or Bear) — risks your data, unless you’re certain
that your data will fit into the parameters of the new type. A narrowing
conversion requires a special operation called a cast.

The following table shows widening conversions of primitive values.
These won’t risk your data:

To cast a data type, put the type you want to cast to in parentheses
immediately before the variable you want to cast: (int)x. This is what it
looks like in context, where x is the variable being cast, float is the original
data type, int is the target data type, and y is the variable storing the new
value:

float x = 1.00; //declaring x as a float
int y = (int)x; //casting x to an int named y

This assumes that the value of x would fit inside of int. Note that x’s
decimal values are lost in the conversion. Java rounds decimals down to
the nearest whole number.

Original Type Converts to Type

byte short, char, int, long, float, double

short int, long, float, double

char int, long, float, double

int long, float, double

long float, double

float double

J a v a l a n g u a g e c o n t r o l 4-3

T e r m s

Return types and statements

You know that a method declaration requires a return type, just as a
variable declaration requires a data type. The return types are the same as
the data types (int, boolean, String, and so on), with the exception of void.

void is a special return type. It signifies that the method doesn’t need to
give anything back when it’s finished. It is most commonly used in action
methods that are only required to do something, not to pass any
information on.

All other return types require a return statement at the end of the method.
You can use the return statement in a void method to leave the method at a
certain point, but otherwise it’s needless.

A return statement consists of the word return and the string, data,
variable name, or concatenation required:

return numCD;

It’s common to use parentheses for concatenations:

return ("Number of files: " + numFiles);

Flow control statements

Flow control statements tell the program how to order and use the
information that you give it. With flow control, you can reiterate
statements, conditionalize statements, create recursive loops, and control
loop behavior.

Flow control statements can be grouped into three kinds of statements:
iteration statements such as for, while, and do-while, which create loops;
selection statements such as switch, if, if-else, if-then-else, and if-else-if
ladders, which conditionalize the use of statements; and the jump
statements break, continue, and return, which shift control to another part
of your program.

A special form of flow control is exception handling. Exception handling
provides a structured means of catching runtime errors in your program
and making them return meaningful information about themselves. You
can also set the exception handler to perform certain actions before
allowing the program to terminate.

4-4 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

Applying concepts
The following sections demonstrate how to apply the terms and concepts
introduced earlier in this chapter.

Escape sequences

A special type of character literal is called an escape sequence. Like C/C++,
Java uses escape sequences to represent special control characters and
characters that cannot be printed. An escape sequence is represented by a
backslash (\) followed by a character code. The following table
summarizes these escape sequences:

Non-decimal numeric characters are escape sequences. An octal character
is represented by three octal digits, and a Unicode character is represented
by lowercase u followed by four hexadecimal digits. For example, the
decimal number 57 is represented by the octal code \071 and the Unicode
sequence \u0039.

The sample string in the following statement prints out the words Name and
"Hildegaard von Bingen" separated by two tabs on one line, and prints out ID
and "1098", also separated by two tabs, on the second line:

String escapeDemo = new
 String("Name\t\t\"Hildegaard von Bingen\"\nID\t\t\"1098\"");

Strings
The string of characters you specify in a String is a literal; the program will
use exactly what you specify, without changing it in any way. However,
the String class provides the means to chain strings together (called string
concatenation), see and use what’s inside of strings (compare strings,

Character Escape Sequence

Backslash \\

Backspace \b

Carriage return \r

Double quote \"

Form feed \f

Horizontal tab \t

New line \n

Octal character \DDD

Single quote \'

Unicode character \uHHHH

J a v a l a n g u a g e c o n t r o l 4-5

A p p l y i n g c o n c e p t s

search strings, or extract a substring from a string), and convert other
kinds of data to strings. Some examples follow:

• Declare variables of the String type and assign values:

String firstNames = "Joseph, Elvira and Hans";
String modifier = " really ";
String tastes = "like chocolate.";

• Get a substring from a string, selecting from the eighth column to the
end of the string:

String sub = firstNames.substring(8); // "Elvira and Hans"

• Compare part of the substring to another string, convert a string to
capital letters, then concatenate it with other strings to get a return
value:

boolean bFirst = firstNames.startsWith("Emine"); // Returns false in
 // this case.

String caps = modifier.toUpperCase(); // Yields " REALLY "
return firstNames + caps + tastes; // Returns the line:
 // Elvira and Hans

 // REALLY like chocolate.

For more information on how to use the String class, see Sun’s API
documentation at http://java.sun.com/j2se/1.4/docs/api/java/lang/
String.html.

StringBuffer
If you want more control over your strings, use the StringBuffer class. This
class is part of the java.lang package.

StringBuffer stores your strings in a buffer so that you don’t have to
declare a permanent String until you need it. Some of the advantages to
this are that you don’t have to redeclare a String if its content changes. You
can reserve a size for the buffer larger than what is already in there.

StringBuffer provides methods in addition to those in String that allow
you to modify the contents of strings in new ways. For instance,
StringBuffer's setCharAt() method changes the character at the index
specified in the first parameter, to the new value specified in the second
parameter:

StringBuffer word = new StringBuffer ("yellow");
word.setCharAt (0, 'b'); //word is now "bellow"

Determining access

By default, classes are available to all of the members inside them, and the
members within the class are available to each other. However, this access
can be widely modified.

4-6 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

Access modifiers determine how visible a class’s or member’s information is
to other members and classes. Access modifiers include:

• public: A public member is visible to members outside the public
member’s scope, as long as the parent class is visible. A public class is
visible to all other classes in all other packages.

• private: A private member’s access is limited to the member’s own
class.

• protected: A protected member can be accessed by other members of its
class and by members of classes in the same package (as long as the
member’s parent class is accessible), but not from other packages. A
protected class is available to other classes in the same package, but not
to other packages.

• If no access modifier is declared, the member is available to all classes
inside the parent package, but not outside the package.

Let’s look at this in context:

class Waistline {
 private boolean invitationGiven = false; // This is private.
 private int weight = 170 // So is this.

 public void acceptInvitation() { // This is public.
 invitationGiven = true;
 }

 //Class JunkFood is declared and object junkFood is instantiated elsewhere:
 public void eat(JunkFood junkFood) {

 /*This object only accepts more junkFood if it has an invitation
 * and if it is able to accept. Notice that isAcceptingFood()
 * checks to see if the object is too big to accept more food:
 */
 if (invitationGiven && isAcceptingFood()) {

 /*This object's new weight will be whatever its current weight
 * is, plus the weight added by junkFood. Weight increments
 * as more junkFood is added:
 */
 weight += junkFood.getWeight();
 }
 }

 //Only the object knows if it's accepting food:
 private boolean isAcceptingFood() {
 // This object will only accept food if there's room:
 return (isTooBig() ? false : true);
 }

J a v a l a n g u a g e c o n t r o l 4-7

A p p l y i n g c o n c e p t s

 //Objects in the same package can see if this object is too big:
 protected boolean isTooBig() {
 //It can accept food if its weight is less than 185:
 return (weight > 185) ? true : false;
 }
}

Notice that isAcceptingFood() and invitationGiven are private. Only
members inside this class know if this object is capable of accepting food
or if it has an invitation.

isTooBig() is protected. Only classes inside this package can see if this
object’s weight exceeds its limit or not.

The only methods that are exposed to the outside are acceptInvitation()
and eat(). Any class can perceive these methods.

Handling methods

The main() method deserves special attention. It is the point of entry into a
program (except an applet). It’s written like this:

public static void main(String[] args) {
 ...
}

There are specific variations allowed inside the parentheses, but the
general form is consistent.

The keyword static is important. A static method is always associated
with its entire class, rather than with any particular instance of that class.
(The keyword static can also be applied to classes. All of the members of a
static class are associated with the class’s entire parent class.) static
methods are also called class methods.

Since the main() method is the starting-point within the program, it must
be static in order to remain independent of the many objects the program
may generate from its parent class.

static’s class-wide association affects how you call a static method and
how you call other methods from within a static method. static members
can be called from other types of members by simply using the name of
the method, and static members can call each other the same way. You
don’t need to create an instance of the class in order to access a static
method within it.

To access non static members of a nonstatic class from within a static
method, you must instantiate the class of the member you want to reach
and use that instance with the access operator, just as you would for any
other method call.

Notice that the arg for the main() method is a String array, with other args
allowed. Remember that this method is where the compiler starts

4-8 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

working. When you pass an arg from the command line, it’s passed as a
string to the String array in the declaration of the main() method, and uses
that arg to start running the program. When you pass a data type other
than a String, it will still be received as a string. You must code into the
body of the main() method the required conversion from String to the data
type needed.

Using type conversions

Review Type conversion is the process of converting the data type of a variable for
the duration of a specific operation. The standard form for a narrowing
conversion is called a cast; it may risk your data.

Implicit casting
There are times when a cast is performed implicitly by the compiler. The
following is an example:

if (3 > 'a') {
 ...
}

In this case, the value of 'a' is converted to an integer value (the ASCII
value of the letter a) before it is compared with the number 3.

Explicit conversion

Syntax for a widening cast is simple:

<nameOfOldValue> = (<new type>) <nameOfNewValue>

Java doesn’t want you to make a narrowing conversion, so you must be
more explicit when doing so:

floatValue = (float)doubValue; // To float "floatValue"
 // from double "doubValue".

longValue = (long)floatValue; // To long "longValue"
 // from float "floatValue".
 // This is one of four possible constructions.

(Note that decimals are rounded down by default.) Be sure you
thoroughly understand the syntax for the types you want to cast; this
process can get messy.

For more information, see “Converting and casting data types” on
page 11-5.

J a v a l a n g u a g e c o n t r o l 4-9

A p p l y i n g c o n c e p t s

Flow control

Review There are three types of loop statements: iteration statements (for, while,
and do-while) create loops, selection statements (switch and all the if
statements) tell the program under what circumstances the program will
use statements, and jump statements (break, continue, and return) shift
control out to another part of the program.

Loops
Each statement in a program is executed once. However, it is sometimes
necessary to execute statements several times until a condition is met. Java
provides three ways to loop statements: while, do and for loops.

• The while loop

The while loop is used to create a block of code that will execute as long
as a particular condition is met. This is the general syntax of the while
loop:

while (<boolean condition statement>) {
 <code to execute as long as that condition is true>
}

The loop first checks the condition. If the condition’s value is true, it
executes the entire block. It then reevaluates the condition, and repeats
this process until the condition becomes false. At that point, the loop
stops executing. For instance, to print “Looping” 10 times:

int x = 0; //Initiates x at 0.
while (x < 10){ //Boolean condition statement.
 System.out.println("Looping"); //Prints "Looping" once.
 x++; //Increments x for the

//next iteration.
}

When the loop first starts executing, it checks whether the value of x is
less than 10. Since it is, the body of the loop is executed. In this case, the
word “Looping” is printed on the screen, and then the value of x is
incremented. This loop continues until the value of x equals 10, when
the loop stops executing.

Unless you intend to write an infinite loop, make sure there is some
point in the loop where the condition’s value becomes false and the
loop terminates. You can also terminate a loop by using the return,
continue, or break statements.

4-10 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

• The do-while loop

The do-while loop is similar to the while loop, except that it evaluates the
condition after the statements instead of before. The following code
shows the previous while loop converted to a do loop:

int x = 0;
do{
 System.out.println("Looping");
 x++;
}
while (x < 10);

The main difference between the two loop constructs is that the do-while
loop is always going to execute at least once, but the while loop won’t
execute at all if the initial condition is not met.

• The for loop

The for loop is the most powerful loop construct. Here is the general
syntax of a for loop:

for (<initialization> ; <boolean condition> ; <iteration>) {
 <execution code>
}

The for loop consists of three parts: an initialization expression, a
Boolean condition expression, and an iteration expression. The third
expression usually updates the loop variable initialized in the first
expression. Here is the for loop equivalent of the previous while loop:

for (int x = 0; x < 10; x++){
 System.out.println("Looping");
}

This for loop and its equivalent while loop are very similar. For almost
every for loop, there is an equivalent while loop.

The for loop is the most versatile loop construct, but still very efficient.
For example, a while loop and a for loop can both add the numbers one
through twenty, but a for loop can do it in one line less.

While:

int x = 1, z = 0;
while (x <= 20) {
 z += x;
 x++;
}

For:

int z = 0;
for (int x=1; x <= 20; x++) {
 z+= x;
}

J a v a l a n g u a g e c o n t r o l 4-11

A p p l y i n g c o n c e p t s

We can tweak the for loop to make the loop execute half as many times:

for (int x=1,y=20, z=0; x<=10 && y>10; x++, y--) {
 z+= x+y;
}

Let’s break this loop up into its four main sections:

a The initialization expression: int x =1, y=20, z=0

b The Boolean condition: x<=10 && y>10

c The iteration expression: x++, y--

d The main body of executable code: z+= x + y

Loop control statements
These statements add control to the loop statements.

• The break statement

The break statement will allow you to exit a loop structure before the
test condition is met. Once a break statement is encountered, the loop
immediately terminates, skipping any remaining code. For instance:

int x = 0;
while (x < 10){
 System.out.println("Looping");
 x++;
 if (x == 5)
 break;
 else
 ... //do something else
}

In this example, the loop will stop executing when x equals 5.

• The continue statement

The continue statement is used to skip the rest of the loop and resume
execution at the next loop iteration.

for (int x = 0 ; x < 10 ; x++){
 if(x == 5)
 continue; //go back to beginning of loop with x=6
 System.out.println("Looping");
}

This example will not print "Looping" if x is 5, but will continue to print
for 6, 7, 8, and 9.

4-12 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

Conditional statements

Conditional statements are used to provide your code with decision-
making capabilities. There are two conditional structures in Java: the if-
else statement, and the switch statement.

• The if-else statement

The syntax of an if-else statement is as follows:

if (<condition1>) {
 ... //code block 1
}
else if (<condition2>) {
 ... //code block 2
}
else {
 ... //code block 3
}

The if-else statement is typically made up of multiple blocks. Only one
of the blocks will execute when the if-else statement executes, based
on which of the conditions is true.

The else-if and else blocks are optional. Also, the if-else statement is
not restricted to three blocks: it can contain as many else-if blocks as
needed.

The following examples demonstrate the use of the if-else statement:

if (x % 2 == 0)
 System.out.println("x is even");
else
 System.out.println("x is odd");
if (x == y)
 System.out.println("x equals y");
else if (x < y)
 System.out.println("x is less than y");
else
 System.out.println("x is greater than y");

• The switch statement

The switch statement is similar to the if-else statement. Here is the
general syntax of the switch statement:

switch (<expression>){
 case <value1>: <codeBlock1>;
 break;
 case <value2>: <codeBlock2>;
 break;
 default : <codeBlock3>;
}

J a v a l a n g u a g e c o n t r o l 4-13

A p p l y i n g c o n c e p t s

Note the following:

• If there is only one statement in a code block, the block does not need
to be enclosed in braces.

• The default code block corresponds to the else block in an if-else
statement.

• The code blocks are executed based on the value of a variable or
expression, not on a condition.

• The value of <expression> must be of an integer type, or a type that
can be safely converted to int, such as char.

• The case values must be constant expressions that are of the same
data type as the original expression.

• The break keyword is optional. It is used to end the execution of the
switch statement once a code block executes. If it’s not used after
codeBlock1, then codeBlock2 executes right after codeBlock1 finishes
executing.

• If a code block should execute when expression is one of a number of
values, each of the values must be specified like this: case <value>:.

Here is an example, where c is of type char:

switch (c){
 case '1': case '3': case '5': case '7': case '9':
 System.out.println("c is an odd number");
 break;
 case '0': case '2': case '4': case '6': case '8':
 System.out.println("c is an even number");
 break;
 case ' ':
 System.out.println("c is a space");
 break;
 default :
 System.out.println("c is not a number or a space");
 }

The switch will evaluate c and jump to the case statement whose value is
equal to c. If none of the case values equal c, the default section will be
executed. Notice how multiple values can be used for each block.

Handling exceptions

Exception handling provides a structured means of catching run-time
errors in your program and making them return meaningful information
about themselves. You can also set the exception handler to perform
certain actions before allowing the program to terminate. Exception
handling uses the keywords try, catch, and finally. A method can declare
an exception by using the throws and throw keywords.

4-14 G e t t i n g S t a r t e d w i t h J a v a

A p p l y i n g c o n c e p t s

In Java, an exception can be a subclass of the class java.lang.Exception or
java.lang.Error. When a method declares that an exception has occurred,
we say that it throws an exception. To catch an exception means to handle
an exception.

Exceptions that are explicitly declared in the method declaration must be
caught, or the code will not compile. Exceptions that are not explicitly
declared in the method declaration could still halt your program when it
runs, but it will compile. Note that good exception handling makes your
code more robust.

To catch an exception, you enclose the code which might cause the
exception in a try block, then enclose the code you want to use to handle
the exception in a catch block. If there is important code (such as clean-up
code) that you want to make sure will run even if an exception is thrown
and the program gets shut down, enclose that code in a finally block at
the end. Here is an example of how this works:

try {
 ... // Some code that might throw an exception goes here.
}
catch(Exception e) {
 ... // Exception handling code goes here.
 // This next line outputs a stack trace of the exception:
 e.printStackTrace();
}
finally {
 ... // Code in here is guaranteed to be executed,
 // whether or not an exception is thrown in the try block.
}

The try block should be used to enclose any code that might throw an
exception that needs to be handled. If no exception is thrown, all of the
code in the try block will execute. If, however, an exception is thrown,
then the code in the try block stops executing at the point where the
exception is thrown and the control flows to the catch block, where the
exception is handled.

You can do whatever you need to do to handle the exception in one or
more catch blocks. The simplest way to handle exceptions is to handle all
of them in one catch block. To do this, the argument in parentheses after
catch should indicate the class Exception, followed by a variable name to
assign to this exception. This indicates that any exception which is an
instance of java.lang.Exception or any of its subclasses will be caught; in
other words, any exception.

If you need to write different exception handling code depending on the
type of exception, you can use more than one catch block. In that case,
instead of passing Exception as the type of exception in the catch argument,
you indicate the class name of the specific type of exception you want to
catch. This may be any subclass of Exception. Keep in mind that the catch

J a v a l a n g u a g e c o n t r o l 4-15

A p p l y i n g c o n c e p t s

block will always catch the indicated type of exception and any of its
subclasses.

Code in the finally block is guaranteed to be executed, even if the try
block code does not complete for some reason. For instance, the code in
the try block might not complete if it throws an exception, but the code in
the finally block will still execute. This makes the finally block a good
place to put clean-up code.

If you know that a method you’re writing is going to be called by other
code, you might leave it up to the calling code to handle the exception that
your method might throw. In that case, you would simply declare that the
method can throw an exception. Code that might throw an exception can
use the throws keyword to declare an exception. This can be an alternative
to catching the exception, since if a method declares that it throws an
exception, it does not have to handle that exception.

Here is an example of using throws:

public void myMethod() throws SomeException {
 ... // Code here might throw SomeException, or one of its subclasses.
 // SomeException is assumed to be a subclass of Exception.
}

You can also use the throw keyword to indicate that something has gone
wrong. For instance, you might use this to throw an exception of your
own when a user has entered invalid information and you want to show
them an error message. To do this, you would use a statement like:

throw new SomeException("invalid input");

4-16 G e t t i n g S t a r t e d w i t h J a v a

T h e J a v a c l a s s l i b r a r i e s 5-1

C h a p t e r

5
Chapter5The Java class libraries

Most programming languages rely on pre-built libraries of classes to
support certain functionality. In the Java language, these groups of related
classes called packages vary by Java edition. Each edition is used for
specific purposes, such as applications, enterprise applications, and
consumer products.

Java 2 Platform editions
The Java 2 Platform is available in several editions used for various
purposes. Because Java is a language that can run anywhere and on any
platform, it is used in a variety of environments: Internet, intranets,
consumer electronic products, and computer applications. Due to Java’s
varied applications, it has been packaged in several editions: Java 2
Standard Edition (J2SE), Java 2 Enterprise Edition (J2EE), and Java 2 Micro
Edition (J2ME). In some cases, as in the development of enterprise
applications, a larger set of packages is used. In other cases, as in
consumer electronic products, only a small portion of the language is
used. Each edition contains a Java 2 Software Development Kit (SDK)
used to develop applications and a Java 2 Runtime Environment (JRE)
used to run applications.

Table 5.1 Java 2 Platform editions

Java 2 Platform Abbreviation Description

Standard Edition J2SE Contains classes that are the core of the
Java language.

5-2 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 P l a t f o r m e d i t i o n s

Standard Edition

The Java 2 Platform, Standard Edition (J2SE) provides developers with a
feature-rich, stable, secure, cross-platform development environment.
This Java edition supports such core features as database connectivity,
user interface design, input/output, and network programming and
includes the fundamental packages of the Java language.

See also

• Java 2 Platform Standard Edition Overview at http://java.sun.com/j2se/
1.4/

• “Introducing the Java Platform” at http://developer.java.sun.com/
developer/onlineTraining/new2java/programming/intro/

• “Java 2 Standard Edition packages” on page 5-3

Enterprise Edition

The Java 2, Enterprise Edition (J2EE) provides the developer with tools to
build and deploy multitier enterprise applications. J2EE includes the J2SE
packages as well as additional packages which support Enterprise
JavaBeans development, Java servlets, JavaServer Pages, XML, and
flexible transaction control.

See also

• “Java 2 Platform Enterprise Edition Overview” at http://java.sun.com/
j2ee/overview.html

• Java 2 Enterprise Edition technical articles at http://
developer.java.sun.com/developer/technicalArticles/J2EE/index.html

Micro Edition

The Java 2, Micro Edition (J2ME) is used in a variety of consumer
electronic products, such as pagers, smart cards, cell phones, hand-held
PDAs, and set-top boxes. While J2ME provides the same Java language

Enterprise Edition J2EE Contains J2SE classes and additional
classes for developing enterprise
applications.

Micro Edition J2ME Contains a subset of J2SE classes and is
used in consumer electronic products.

Table 5.1 Java 2 Platform editions (continued)

Java 2 Platform Abbreviation Description

T h e J a v a c l a s s l i b r a r i e s 5-3

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

advantages of code portability across platforms, the ability to run
anywhere, and safe network delivery as J2SE and J2EE, it uses a smaller
set of packages. J2ME includes a subset of the J2SE packages with an
additional package specific to the Micro Edition, javax.microedition.io. In
addition, J2ME applications are upwardly scalable to work with J2SE and
J2EE.

See also

• “Java 2 Platform Micro Edition Overview” at http://java.sun.com/j2me/

• Consumer & Embedded Products technical articles at http://
developer.java.sun.com/developer/technicalArticles/ConsumerProducts/
index.html

Java 2 Standard Edition packages
The Java 2 Platform, Standard Edition (J2SE) comes with a very
impressive library that includes support for database connectivity, user
interface design, input and output (I/O), and network programming.
These libraries are organized into groups of related classes called
packages. The following table briefly describes some of these packages.

Table 5.2 J2SE packages

Package Package Name Description

Language java.lang Classes that contain the main core of the Java
language.

Utilities java.util Support for utility data structures.

I/O java.io Support for various types of input/output.

Text java.text Localization support for handling text,
dates, numbers, and messages.

Math java.math Classes for performing arbitrary-precision
integer and floating-point arithmetic.

AWT java.awt User interface design and event-handling.

Swing javax.swing Classes for creating all-Java, lightweight
components that behave similarly on all
platforms.

Javax javax Extensions to the Java language.

Applet java.applet Classes for creating applets.

Beans java.beans Classes for developing JavaBeans.

Reflection java.lang.reflect Classes used to obtain runtime class
information.

5-4 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

Note Java packages vary by Java 2 Platform edition. The Java 2 Software
Development Kit (SDK) is available in several editions used for various
purposes: Standard Edition (J2SE), Enterprise Edition (J2EE), and Micro
Edition (J2ME).

See also

• “Java 2 Platform editions” on page 5-1

• “Java 2 Platform, Standard Edition, API Specification” in the JDK API
Documentation

• Sun’s tutorial, “Creating and using packages” at http://
www.java.sun.com/docs/books/tutorial/java/interpack/packages.html

• “Packages” in “Managing paths” in Building Applications with JBuilder

The Language package: java.lang

One of the most important packages in the Java class library is the
java.lang package. This package, which is automatically imported into
every Java program, contains the language’s main support classes which
are fundamental to the design of the Java programming language.

See also

• java.lang in the JDK API Documentation

• “Key java.lang classes” on page 5-12

XML
processing

org.w3c.dom
org.xml.sax
javax.xml.transform
javax.xml.parsers

Java API for XML processing (JAXP)
includes the basic facilities for working with
XML documents: Document Object Model
(DOM), Simple API for XML Parsing (SAX),
XSL Transformations (XSLT), and a
pluggability layer for parsers.

SQL java.sql
javax.sql

Support for accessing and processing data in
databases using the JDBC API.

RMI java.rmi Support for distributed programming.

Networking java.net Classes that support development of
networking applications.

Security java.security Support for cryptographic security.

Table 5.2 J2SE packages (continued)

Package Package Name Description

T h e J a v a c l a s s l i b r a r i e s 5-5

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The Utility package: java.util

The java.util package contains various utility classes and interfaces that
are crucial for Java development. Classes in this package support the
collections framework and date and time facilities.

See also

• java.util in the JDK API Documentation

• “Key java.util classes” on page 5-18

The I/O package: java.io

The java.io package provides support for reading and writing data to and
from different devices. Java also supports input and output of character
streams. In addition, the File class in the java.io package uses an abstract,
system-independent representation of file and directory pathnames for
better support of non-UNIX platforms. The classes in this package are
divided into the following groups: input stream classes, output stream
classes, file classes, and the StreamTokenizer class.

See also

• java.io in the JDK API Documentation

• “Key java.io classes” on page 5-21

The Text package: java.text

The java.text package provides classes and interfaces that provide
localization support for handling text, dates, numbers, and messages.
Classes in this package, such as NumberFormat, DateFormat, and Collator, can
format numbers, date and time, and strings in a locale-specific way. Other
classes support parsing, searching, and sorting of strings.

See also

• java.text in the JDK API Documentation

• “Internationalizing programs with JBuilder” in Building Applications
with JBuilder

5-6 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The Math package: java.math

The java.math package, not to be confused with the java.lang.Math class,
provides classes for performing arbitrary-precision integer arithmetic (
BigInteger) and arbitrary-precision floating point arithmetic (BigDecimal).

The BigInteger class provides support for representing arbitrarily large
integers.

The BigDecimal class is used for calculations requiring decimal support,
such as monetary calculations, and also provides operations for basic
arithmetic, scale manipulation, comparison, format conversion, and
hashing.

See also

• java.math in the JDK API Documentation

• java.lang.Math class in the JDK API Documentation

• “Arbitrary-Precision Math” in the JDK Guide to Features

The AWT package: java.awt

The Abstract Window Toolkit (AWT) package, part of the Java
Foundation Classes (JFC), provides support for Graphical User Interface
(GUI) programming and includes such features as user interface
components, event-handling models, layout managers, graphics and
imaging tools, and data transfer classes for cut and paste.

See also

• java.awt in the JDK API Documentation

• “Abstract Window Toolkit (AWT)” in the JDK Guide to Features

• “AWT Fundamentals” at http://developer.java.sun.com/developer/
onlineTraining/awt/

• “Tutorial: Building an applet” in Introducing JBuilder

• Designing Applications with JBuilder

The Swing package: javax.swing

The javax.swing package provides a set of “lightweight” (all-Java
language) components that automatically have the look and feel of any OS
platform. Swing components are 100% Pure Java versions of the existing
AWT component set, such as button, scrollbar, and label, with an
additional set of components, such as tree view, table, and tabbed pane.

T h e J a v a c l a s s l i b r a r i e s 5-7

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

Note javax packages are extensions to the core Java language.

See also

• javax.swing in the JDK API Documentation

• “Java Foundation Classes (JFC)” at http://java.sun.com/docs/books/
tutorial/post1.0/preview/jfc.html

• Sun’s Swing tutorial, “Trail: Creating a GUI with JFC/Swing” at http://
www.java.sun.com/docs/books/tutorial/uiswing/index.html

• Related chapters in Designing Applications with JBuilder:

• “Introduction”

• “Managing the component palette”

• “Using layout managers”

• “Using nested panels and layouts”

• “Tutorial: Building a Java text editor”

The Javax packages: javax

The many javax packages are extensions to the core Java language. These
include such packages as javax.swing, javax.sound, javax.rmi,
javax.transactions, and javax.naming. Developers can also author their own
custom javax packages.

See also

• javax.accessibility in the JDK API Documentation

• javax.naming in the JDK API Documentation

• javax.rmi in the JDK API Documentation

• javax.sound.midi in the JDK API Documentation

• javax.sound.sampled in the JDK API Documentation

• javax.swing in the JDK API Documentation

• javax.transaction in the JDK API Documentation

The Applet package: java.applet

The java.applet package provides the classes for creating applets, as well
as classes that applets use to communicate with its applet context, usually
a web browser. Applets are Java programs that are not intended to run on
their own, but rather to be embedded inside another application.
Commonly, applets are stored on an Internet/intranet server, called by an

5-8 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

HTML page, and downloaded to multiple client platforms where they are
run in a Java Virtual Machine (JVM) provided by the browser on the client
machine. This delivery and execution is done under the supervision of a
Security Manager, which can prevent applets from performing such tasks
as formatting the hard drive or opening connections to “untrusted”
machines.

Due to security issues and browser JDK compatibility, it is important to
fully understand applets before developing them. Applets do not have the
full functionality of Java programs for security reasons. Applets also rely
on the browser’s JDK version which may not be current. Many of the
browsers at the time of this writing do not fully support the most recent
JDK. For example, most browsers include an older JDK version that does
not support Swing. Therefore, applets using Swing components do not
run in these browsers.

See also

• java.applet in the JDK API Documentation

• Sun’s tutorial, “Trail: Writing applets” at http://www.java.sun.com/docs/
books/tutorial/applet/index.html

• Chapter 9, “An introduction to the Java Virtual Machine”

• “Working with applets” in the Web Application Developer’s Guide

• “Tutorial: Building an applet” in Introducing JBuilder

The Beans package: java.beans

The java.beans package contains classes related to JavaBeans development.
JavaBeans, Java classes that serve as self-contained, reusable components,
extend the Java platform’s “write once, run anywhere” capability to
reusable component development. These reusable pieces of code can be
manipulated and updated with minimal impact on the testing of the
program.

See also

• java.beans in the JDK API Documentation

• JavaBeans Technology technical articles at http://
developer.java.sun.com/developer/technicalArticles/jbeans/index.html

• “Creating JavaBeans with BeansExpress” in Building Applications with
JBuilder

T h e J a v a c l a s s l i b r a r i e s 5-9

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The Reflection package: java.lang.reflect

The java.lang.reflect package provides classes and interfaces for
examining and manipulating classes at runtime. Reflection allows access
to information about fields and methods and constructors of loaded
classes. The Java code can use this reflected information to operate on
counterparts of objects.

Classes in this package provide applications such as debuggers,
interpreters, object inspectors, class browsers, and services such as Object
Serialization and JavaBeans access to public members or members
declared by a class.

See also

• java.lang.reflect in the JDK API Documentation

• “Reflection” in the JDK Guide to Features

XML processing

Java, in conjunction with XML (Extensible Markup Language), provides a
portable, flexible framework for creating, exchanging, and manipulating
information between applications and over the Internet, as well as
transforming XML documents into other document types. The Java API
for XML processing (JAXP) includes the basic facilities for working with
XML documents: Document Object Model (DOM), Simple API for XML
Parsing (SAX), XSL Transformations (XSLT), and a pluggability layer for
parsers.

See also

• org.w3c.dom in the JDK API Documentation

• org.xml.sax in the JDK API Documentation

• javax.xml.transform in the JDK API Documentation

• javax.xml.parsers in the JDK API Documentation

• “Java Technology & XML Home Page” at http://java.sun.com/xml/

• “XML in the Java 2 Platform” in the JDK Guide to Features

• Sun’s XML Tutorial at http://java.sun.com/xml/tutorial_intro.html

5-10 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The SQL package: java.sql

The java.sql package contains classes that provide the API for accessing
and processing data in a data source. The java.sql package is also referred
to as the JDBC 2.0 (Java Database Connectivity) API. This API includes a
framework for dynamically installing different drivers to access different
types of data sources. JDBC is an industry standard that allows the Java
platform to connect with almost any database, even those written in other
languages such as Structured Query Language (SQL).

The java.sql package includes classes, interfaces, and methods for making
database connections, sending SQL statements to a database, retrieving
and updating query results, mapping SQL values, providing information
about a database, throwing exceptions, and providing security.

See also

• java.sql in the JDK API Documentation

• Sun’s tutorial, “Trail: JDBC Database Access” at http://java.sun.com/
docs/books/tutorial/jdbc/index.html

• JBuilder’s “SQL reference” in the JDataStore Developer’s Guide

The RMI package: java.rmi

The java.rmi package provides classes for Java Remote Method Invocation
(RMI). Remote Method Invocation (RMI) enables you to create distributed
Java-to-Java applications, in which the methods of remote Java objects can
be invoked from other Java virtual machines, possibly on different hosts.
A Java program can make a call on a remote object once it obtains a
reference to the remote object, either by looking up the remote object in
the bootstrap naming service provided by RMI or by receiving the
reference as an argument or a return value. A client can call a remote
object in a server, and that server can also be a client of other remote
objects. RMI uses object serialization to marshal and unmarshal
parameters and does not truncate types, supporting true object-oriented
polymorphism.

A sample RMI application, SimpleRMI.jpr, is installed in the samples/Rmi
directory of your JBuilder installation. See the HTML project file,
SimpleRMI.html, for a description of the sample application. (This sample is
a feature of JBuilder SE and Enterprise.)

An example of writing a distributed database application using RMI and
DataSetData is located in the samples/DataExpress/StreamableDataSets
directory of your JBuilder installation. This example includes a server
application that will take data from the employee sample table and send
the data via RMI in the form of DataSetData. A client application

T h e J a v a c l a s s l i b r a r i e s 5-11

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

communicates with the server through a custom Provider and a custom
Resolver, and displays the data in a grid. (This sample is a feature of
JBuilder Enterprise.)

See also

• java.rmi in the JDK API Documentation

• “Java Remote Method Invocation (RMI)” in the JDK Guide to Features

• “The Java Remote Method Invocation - Distributed Computing for Java
(a White Paper)” at http://java.sun.com/marketing/collateral/
javarmi.html

The Networking package: java.net

The java.net package contains classes for developing networking
applications. Using the socket classes, you can communicate with any
server on the Internet or implement your own Internet server. Classes are
also provided for data retrieval from the Internet.

See also

• java.net in the JDK API Documentation

• “Networking Features” in the JDK Guide to Features

The Security package: java.security

The Security package, java.security,defines classes and interfaces for the
security framework. There are two category of classes:

• Classes that implement access control and prevent untrusted code from
performing sensitive operations.

• Authentication classes that implement message digests and digital
signatures and authenticate classes and other objects.

Using these classes, developers can protect access to applets and Java
code, including applications, beans, and servlets, by creating permissions
and security policies. When code is loaded, it is assigned permissions
based on the security policy. Permissions specify which resources can be
accessed, such as read/write or connection access. The policy, which
controls which permissions are available, is usually initialized from an
external configurable policy file which defines the code’s security policy.
The use of permissions and policy allow for flexible, configurable, and
extensible access control to the code.

5-12 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

See also

• java.security in the JDK API Documentation

• “Security” in the JDK Guide to Features

Key java.lang classes

The Object class: java.lang.Object

The Object class in the java.lang package is the parent class or superclass of
all Java classes. This simply means that the Object class is the root of the
class hierarchy and that all Java classes are derived from it. The Object
class itself contains a constructor and several methods of importance,
including clone(), equals(), and toString().

An object that uses the clone() method simply makes a copy of itself.
When a copy is made, the new memory is allocated for the clone first, then
contents of the original object is copied into the clone object. In the
following example where the Document class implements the Cloneable
interface, a copy of the Document class containing a text and author property
is created using the clone() method. An object is not seen as cloneable
unless it implements the Cloneable interface.

Document document1 = new Document("docText.txt", "Joe Smith");
Document document2 = document1.clone();

The equals() method compares two objects of the same type for equality
by comparing the properties of both objects. It simply returns a boolean
value depending on the results of the object that calls it and the object that
is passed to it. For instance, if equals() is called by an object that passes it
an object that is identical, the equals() method returns a true value.

The toString() method returns a string representing the object. For this
method to return proper information about different types of objects, the
object’s class must override it.

See also

• java.lang.Object in the JDK API Documentation

Method Argument Description

clone () Creates and returns a copy of an object.

equals (Object obj) Indicates whether another object is “equal to” the
specified object.

toString () Returns a string representation of an object

T h e J a v a c l a s s l i b r a r i e s 5-13

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

Type wrapper classes

Due to performance reasons, primitive data types are not used as objects
in Java. These primitive data types include numbers, booleans, and
characters.

However, some Java classes and methods require primitive data types to
be objects. Java uses wrapper classes to wrap or encapsulate the primitive
type as an object as shown in the following table.

The constructor for the wrapper classes, such as Character(char value),
simply takes an argument of the class type it is wrapping. For example,
the following code demonstrates how a Character wrapper class is
constructed.

Character charWrapper = new Character('T');

Although each of these classes contains its own methods, several methods
are standard throughout each object. These methods include methods that
return a primitive type, toString(), and equals().

Each wrapper class has a method, such as charValue(), that returns the
primitive type of the wrapper class. The following code demonstrates this
using the charWrapper object. Notice that charPrimitive is a primitive data
type (declared as a char). Using this method, primitive data types can be
assigned to type wrappers.

char charPrimitive = charWrapper.charValue();

The toString() and equals() methods are used similarly as in the Object
class.

Primitive type Description Wrapper

boolean True or False (1 Bit) java.lang.Boolean

byte -128 to 127 (8-bit signed integer) java.lang.Byte

char Unicode character (16-bit) java.lang.Character

double +1.79769313486231579E+308 to
+4.9406545841246544E-324 (64-bit)

java.lang.Double

float +3.40282347E+28 to +1.40239846E-45
(32-bit)

java.lang.Float

int -2147483648 to 2147483647
(32-bit signed integer)

java.lang.Integer

long -9223372036854775808 to
9223372036854775807 (64-bit signed integer)

java.lang.Long

short -32768 to 32767 (16-bit signed integer) java.lang.Short

void An uninstantiable placeholder class to hold a
reference to the Class object representing the
primitive Java type void.

java.lang.Void

5-14 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The Math class: java.lang.Math

The Math class in the java.lang package, not to be confused with the
java.math package, provides useful methods that implement common
math functions. This class is not instantiated and is declared final, so it
cannot be subclassed. Some of the methods included in this class are:
sin(), cos(), exp(), log(), max(), min(), random(), sqrt(), and tan(). The
following are several examples of these methods.

double d1 = Math.sin(45);
double d2 = 23.4;
double d3 = Math.exp(d2);
double d4 = Math.log(d3);
double d5 = Math.max(d2, Math.pow(d1, 10));

Some of these methods are overloaded to accept and return different data
types.

The Math class also declares the constants PI and E.

Note The java.math package, unlike java.lang.Math, provides support classes for
working with arbitrarily large numbers.

See also

• java.lang.Math in the JDK API Documentation

• java.math in the JDK API Documentation

The String class: java.lang.String

The String class in the java.lang package is used to represent character
strings. Unlike C/C++, Java does not use character arrays to represent
strings. Strings are constant, meaning their values cannot change once
they are created. The String class is typically constructed when the Java
compiler encounters a string in quotes. However, strings can be
constructed several ways. The following table lists several of the String’s
constructors and the arguments they accept.

Constructor Argument Description

String () Initializes a new String object.

String (String value) Initializes a new String object with
the contents of the String
argument.

String (char[] value) Creates a new String that contains
the array in the same sequence.

T h e J a v a c l a s s l i b r a r i e s 5-15

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The String class contains several important methods that are essential
when dealing with strings. These methods are used to edit, compare, and
analyze strings. Because strings are immutable and cannot be changed,
none of these methods can change the character sequence. The
StringBuffer class, discussed in the next section, provides methods for
changing strings.

The following table lists some of the more crucial methods and declares
what they accept and return.

A very efficient feature associated with many of these methods is that they
are overloaded for more flexibility. The following demonstrates how the
String class and some of its methods can be used.

Important Remember that array and String indexes begin at zero.

String s1 = new String("Hello World.");

char cArray[] = {'J', 'B', 'u', 'i', 'l', 'd', 'e', 'r'};
String s2 = new String(cArray); //s2 = "JBuilder"

int i = s1.length(); //i = 12
char c = s1.charAt(6); //c = 'W'
i = s1.indexOf('e'); //i = 1 (index of 'e' in "Hello World.")

String (char[] value, int offset,
int count)

Creates a new String that contains
a subarray of the argument.

String (StringBuffer buffer) Initializes a new String object with
the contents of the StringBuffer
argument.

Method Argument Returns Description

length () int Returns the number of characters in
the string.

charAt (int index) char Returns the character at the specified
index of the string.

compareTo (String value) int Compares a string to the argument
string.

indexOf (int ch) int Returns the index location of the first
occurrence of the specified character.

substring (int beginIndex,
int endIndex)

String Returns a new string that is a
substring of the string.

concat (String str) String Concatenates the specified String to
the end of this string.

toLowerCase () String Returns the string in lowercase.

toUpperCase () String Returns the string in uppercase.

valueOf (Object obj) String Returns the string representation of
the Object argument.

Constructor Argument Description

5-16 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

String s3 = "abcdef".substring(2, 5); //s3 = "cde"
String s4 = s3.concat("f"); //s4 = "cdef"
String s5 = String.valueOf(i); //s5 = "1" (valueOf() is static)

See also

• java.lang.String in the JDK API Documentation

The StringBuffer class: java.lang.StringBuffer

The StringBuffer class in the java.lang package, like the String class,
represents a sequence of characters. Unlike a string, the contents of a
StringBuffer can be modified. Using various StringBuffer methods, the
length and content of the string buffer can be changed. Additionally, the
StringBuffer object can grow in length when necessary. Finally, after
modifying the StringBuffer, you can create a new string representing the
contents in the StringBuffer.

The StringBuffer class has several constructors shown in the following
table.

There are several important methods that separate the StringBuffer class
from the String class: capacity(), setLength(), setCharAt(), append(), insert()
and toString(). The append() and insert() methods are overloaded to
accept various data types.

Constructor Argument Description

StringBuffer () Creates an empty string buffer which can hold up to
16 characters.

StringBuffer (int length) Creates an empty string buffer which can hold the
number of characters specified by length.

StringBuffer (String str) Creates a string buffer which contains a copy of the
String str.

Method Argument Description

setLength (int newLength) Sets the length of the Stringbuffer.

capacity () Returns the amount of memory allocated to the
StringBuffer.

setCharAt (int index,
char ch)

Sets the character at the specified index of the
StringBuffer to ch.

append (char c) Adds the string representation of the data type in
the argument to the StringBuffer. This method is
overloaded to accept various data types.

insert (int offset,
char c)

Inserts the string representation of the data type in
the argument into this StringBuffer. This method is
overloaded to accept various data types.

toString () Converts the StringBuffer to a String.

T h e J a v a c l a s s l i b r a r i e s 5-17

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The capacity() method, which returns the amount of memory allocated for
the StringBuffer, can return a larger value than the length() method.
Memory allocated for a StringBuffer can be set with the StringBuffer(int
length) constructor.

The following code demonstrates some of the methods associated with the
StringBuffer class.

StringBuffer s1 = new StringBuffer(10);

int c = s1.capacity(); //c = 10
int len = s1.length(); //len = 0

s1.append("Bor"); //s1 = "Bor"
s1.append("land"); //s1 = "Borland"

c = s1.capacity(); //c = 10
len = s1.length(); //len = 7

s1.setLength(2); //s1 = "Bo"

StringBuffer s2 = new StringBuffer("Helo World");
s2.insert(3, "l"); //s2 = "Hello World"

See also

• java.lang.StringBuffer in the JDK API Documentation

The System class: java.lang.System

The System class in the java.lang package contains several useful class
fields and methods for accessing platform-independent system resources
and information, copying arrays, loading files and libraries, and getting
and setting properties. For example, the currentTimeMillis() method
provides access to the current system time. It’s also possible to retrieve
and change system resources using the getProperty and setProperty
methods. Another convenient feature that the System class provides is the
gc() method, which requests that the garbage collector perform a
thorough garbage collection; and finally, the System class allows
developers to load dynamic link libraries with the loadLibrary() method.

The System class is declared as a final class and can’t be subclassed. It also
declares its methods and variables as static. This simply allows them to
be available without the class being instantiated.

The System class also declares several variables which are used to interact
with the system. These variables include in, out, and err. The in variable
represents the system’s standard input stream, whereas the out variable
represents the standard output stream. The err variable is the standard

5-18 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

error stream. Streams are discussed in more detail in the I/O package
section.

See also

• java.lang.System in the JDK API Documentation

Key java.util classes

The Enumeration interface: java.util.Enumeration

The Enumeration interface in the java.util package is used to implement a
class capable of enumerating values. A class that implements the
Enumeration interface can facilitate the traversal of data structures.

The methods defined in the Enumeration interface allow the Enumeration
object to continuously retrieve all the elements from a set of values, one by
one. There are only two methods declared in the Enumeration interface,
hasMoreElements() and nextElement().

The hasMoreElements() method returns true if more elements remain in the
data structure. The nextElement() method is used to return the next value
in the structure being enumerated.

Method Argument Description

arrayCopy arraycopy(Object src, int
src_position, Object dst, int
dst_position, int length)

Copies the specified source
array, beginning at the
specified position, to the
specified position of the
destination array.

currentTimeMillis () Returns the current time in
milliseconds.

loadLibrary (String libname) Loads the system library
specified by the argument.

getProperty (String key) Gets the system property
indicated by the key.

gc () Runs the garbage collector
which deletes objects that are
no longer in use.

load (String filename) Loads a code file from the local
file system as a dynamic
library.

exit (int status) Exits the current program.

setProperty (String key, String value) Sets the system property
specified by the key.

T h e J a v a c l a s s l i b r a r i e s 5-19

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The following example creates a class called CanEnumerate, which
implements the Enumeration interface. An instance of that class is used to
print all the elements of the Vector object, v.

CanEnumerate enum = v.elements();

while (enum.hasMoreElements()) {
 System.out.println(enum.nextElement());
}

There is one limitation on an Enumeration object; it can only be used once.
There is no method defined in the interface that allows the Enumeration
object to backtrack to previous elements. So, once it enumerates the entire
set of values, it’s consumed.

See also

• java.util.Enumeration in the JDK API Documentation

The Vector class: java.util.Vector

Java does not include support for all dynamic data structures; it only
defines a Stack class. However, the Vector class in the java.util package
provides an easy way to implement dynamic data structures.

The Vector class is efficient, because it allocates more memory than needed
when adding new elements. Therefore, a Vector’s capacity is usually
greater than its actual size. The capacityIncrement argument in the fourth
constructor, shown in the following table, defines a Vector’s capacity
increase whenever an element is added to it.

Constructor Argument Description

Vector () Constructs an empty vector with an array size
of 10 and a capacity increment of zero.

Vector (Collection c) Constructs a vector containing the elements of
the collection, in the order they are returned by
the collection’s iterator.

Vector (int initialCapacity) Constructs an empty vector with the specified
initial capacity and a capacity increment of
zero.

Vector (int initialCapacity,
int
capacityIncrement)

Constructs an empty vector with the specified
initial capacity and capacity increment.

5-20 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The following table lists some of the more important methods of the Vector
class and the arguments they accept.

The following code demonstrates the use of the Vector class. A Vector
object called vector1 is created and enumerates its elements in three ways:
using Enumeration’s nextElement() method, using Vector’s elementAt()
method, and using Vector’s toString() method. An AWT component,
textArea, is created to display the output. The text property is set using the
setText() method.

Vector vector1 = new Vector();

for (int i = 0; i < 10;i++) {
 vector1.addElement(new Integer(i)); //addElement accepts object or
 //composite types
} //but not primitive types

//enumerate vector1 using nextElement()
Enumeration e = vector1.elements();
textArea1.setText("The elements using Enumeration's nextElement():\n");
while (e.hasMoreElements()) {
 textArea1.append(e.nextElement()+ " | ");
}
textArea1.append("\n\n");

//enumerate using the elementAt() method
textArea1.append("The elements using Vector's elementAt():\n");
for (int i = 0; i < vector1.size();i++) {
 textArea1.append(vector1.elementAt(i) + " | ");
}
textArea1.append("\n\n");

Method Argument Description

setSize (int newSize) Sets the size of a vector.

capacity () Returns the capacity of a vector.

size () Returns the number of elements stored in a
vector.

elements () Returns an enumeration of elements of a
vector.

elementAt (int) Returns the element at the specified index.

firstElement () Returns the first element of a vector
(at index 0).

lastElement () Returns the last element of a vector.

removeElementAt (int index) Removes the element at the specified index.

addElement (Object obj) Adds the specified object to the end of a vector,
increasing its size by one.

toString () Returns a string representation of each
element in a vector.

T h e J a v a c l a s s l i b r a r i e s 5-21

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

//enumerate using the toString() method
textArea1.append("Here's the vector as a String:\n");
textArea1.append(vector1.toString());

The following figure demonstrates what this code would accomplish if it
was used within an application.

Figure 5.1 Vector and Enumeration example

See also

• java.util.Vector in the JDK API Documentation

Key java.io classes

Input stream classes

An input stream is used to read data from an input source, such as a file, a
string, or memory. Examples of input stream classes in the java.io
package include InputStream, BufferedInputStream, DataInputStream, and
FileInputStream.

The basic method of reading data using an input stream class is always the
same:

1 Create an instance of an input stream class.

2 Tell it where to read the data from.

Note Input stream classes read data as a continuous stream of bytes. If no data
is currently available, the input stream class blocks or waits until data
becomes available.

In addition to the input stream classes, the java.io package provides
reader classes (except for DataInputStream). Examples of reader classes
include Reader, BufferedReader, FileReader, and StringReader. Reader classes
are identical to input stream classes, except that they read Unicode
characters instead of bytes.

5-22 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

InputStream class: java.io.InputStream
The InputStream class in the java.io package is an abstract class and the
superclass of all other input stream classes. It provides the basic interface
for reading a stream of bytes. The following table lists some of the
methods defined in the InputStream class and the arguments these methods
accept. Each of these methods returns an int value, except the close()
method.

See also

• java.io.InputStream in the JDK API Documentation

FileInputStream class: java.io.FileInputStream
The FileInputStream class in the java.io package is very similar to the
InputStream class, only it’s designed specifically for reading files. It
contains three constructors: FileInputStream(String filename),
FileInputStream(File fileobject), and FileInputStream(FileDescriptor
fdObj). The first constructor takes the file’s name as an argument, while the
second simply takes a file object. The third constructor takes a file
descriptor object. File classes are discussed later.

Method Argument Description

read () Reads the next byte from the input stream and
returns it as an integer. When it reaches the end
of the stream, it returns -1.

read (byte b[]) Reads multiple bytes and stores them in array
b. It returns the number of bytes read or -1
when the end of the stream is reached.

read (byte b[], int off,
int len)

Reads up to len bytes of data starting from
offset off from the input stream into an array.

available () Returns the number of bytes that can be read
from an input stream without blocking by the
next caller of a method for the input stream.

skip (long n) Skips over and discards n bytes of data from an
input stream.

close () Closes an input stream and releases system
resources used by the stream.

Constructor Argument Description

FileInputStream (String filename) Creates a FileInputStream by opening a
connection to the file named by the path
name filename in the file system.

T h e J a v a c l a s s l i b r a r i e s 5-23

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The following example demonstrates the use of the FileInputStream class.

import java.io.*;

class FileReader {
 public static void main(String args[]) {
 byte buff[] = new byte[80];
 try {
 InputStream fileIn = new FileInputStream("Readme.txt");
 int i = fileIn.read(buff);
 String s = new String(buff);
 System.out.println(s);
 }
 catch(FileNotFoundException e) {
 }
 catch(IOException e) {
 }
 }
}

In this example, a character array that stores the input data is created.
Then, a FileInputStream object is instantiated and the input file’s name is
passed to its constructor. Next, the FileInputStream read() method is used
to read a stream of characters and store them in the buff array. The first 80
bytes are read from the Readme.txt file and stored in the buff array.

Note The FileReader class could also be used in place of the FileInputStream()
method. The only changes needed would be a char array used in place of
the byte array, and the reader object would be instantiated as follows:

Reader fileIn = new FileReader("Readme.txt");

Finally, to see the result of the read call, a String object is created using the
buff array and then passed to the System.out.println() method.

As mentioned earlier, the System class defined in java.lang provides access
to system resources. System.out, a static member of System, represents the
standard output device. The println() method is called to send the output
to the standard output device. The System.out object is of type PrintStream,
which is discussed below.

The System.in object, another static member of the System class, is of type
InputStream and represents the standard input device.

FileInputStream (File fileobject) Creates a FileInputStream by opening a
connection to the file named by the
fileobject file in the file system.

FileInputStream (FileDescriptor fdObj) Creates a FileInputStream by using the file
descriptor fdObj, which represents an
existing connection to an actual file in the
file system.

Constructor Argument Description

5-24 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

See also

• java.io.FileInputStream in the JDK API Documentation

Output stream classes

The output stream classes are the counterparts to the input stream classes.
They are used to output streams of data to various output sources. The
main output stream classes in Java, located in the java.io package, are
OutputStream, PrintStream, BufferedOutputStream, DataOutputStream,and
FileOutputStream.

OutputStream class: java.io.OutputStream
To output a stream of data, an OutputStream object is created and directed
to output the data to a particular output source. As expected, there are
also corresponding writer classes for each class, except the
DataOutputStream class. Some of the methods defined in the OutputStream
class include:

See also

• java.io.OutputStream in the JDK API Documentation

PrintStream class: java.io.PrintStream
The PrintStream class in the java.io package, primarily designed to output
data as text, has two constructors. The first constructor flushes the
buffered data based on specified conditions, while the second flushes the
data when it encounters a new line character (if autoflush is set to true).

Method Argument Description

write (int b) Writes b to an output stream.

write (byte b[]) Writes array b to an output stream.

write (byte b[], int off,
int len)

Writes len bytes from the byte array starting at
offset off to the output stream.

flush () Flushes the output stream and forces the
output of any buffered data.

close () Closes the output stream and releases any
system resources associated with it.

Constructor Argument Description

PrintStream (OutputStream out) Creates a new print stream.

PrintStream (OutputStream out,
boolean autoflush)

Creates a new print stream.

T h e J a v a c l a s s l i b r a r i e s 5-25

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

Several of the methods defined in the PrintStream class are shown in the
following table.

The print() and println() methods are overloaded to receive different data
types.

See also

• java.io.PrintStream in the JDK API Documentation

BufferedOutputStream class: java.io.BufferedOutputStream
The BufferedOutputStream class in the java.io package implements a
buffered output stream which increases output efficiency by storing
values in a buffer and writing them only when the buffer is full or the
flush() method is called.

BufferedOutputStream has three methods to flush and write to the output
stream.

Method Argument Description

checkError () Flushes the stream and returns a false value if
an error is detected.

print (Object obj) Prints an object.

print (String s) Prints a string.

println () Prints and terminates the line using the line
separator string which is defined by the system
property line.separator and is not necessarily a
single newline character ('\n').

println (Object obj) Prints an object and terminates the line. This
method behaves as though it invokes
print(Object) and then println().

Constructor Argument Description

BufferedOutputStream (OutputStream out) Creates a new 512-byte buffered
output stream to write data to
the output stream.

BufferedOutputStream (OutputStream out, int size) Creates a new buffered output
stream to write data to the
output stream with the specified
buffer size.

Method Argument Description

flush () Flushes the buffered output stream.

write (byte[] b, int off,
int len)

Writes len bytes from the byte array starting at
offset off to the buffered output stream.

write (int b) Writes the byte to the buffered output stream.

5-26 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

See also

• java.io.BufferedOutputStream in the JDK API Documentation

DataOutputStream class: java.io.DataOutputStream
A data output stream allows an application to write primitive Java data
types to an output stream in a portable binary format. An application can
then use a data input stream to read the data back in.

The DataOutputStream class in the java.io package has a single constructor,
DataOutputStream(OutputStream out), that creates a new data output stream
used to write data to an output stream.

The DataOutputStream class uses a variety of write() methods to output
primitive data types, as well as a flush() and size() method.

See also

• java.io.DataOutputStream in the JDK API Documentation

FileOutputStream class: java.io.FileOutputStream
A file output stream is an output stream for writing data to a file or to a
FileDescriptor. Whether or not a file is available or may be created
depends upon the underlying platform. Some platforms allow a file to be
opened for writing by only one FileOutputStream at a time. In such
situations the constructors in this class fail if the file involved is already
open. FileOutputStream in the java.io package, a subclass of OutputStream,
has several constructors.

Method Argument Description

flush () Flushes the data output stream.

size () Returns the number of bytes written to the data
output stream.

write (int b) Writes the byte to the output stream.

writeType (type v) Writes the specified primitive type to the
output stream as bytes.

Constructor Argument Description

FileOutputStream (File file) Creates a file output stream to write to the
file specified.

FileOutputStream (FileDescriptor fdObj) Creates an output file stream to write to
the file descriptor, which represents an
existing connection to an actual file in the
file system.

FileOutputStream (String name) Creates an output file stream to write to
the file with the specified name.

FileOutputStream (String name,
boolean append)

Creates an output file stream to write to
the file with the specified name.

T h e J a v a c l a s s l i b r a r i e s 5-27

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

FileOutputStream has several methods, including close(), finalize(), and
several write() methods.

See also

• java.io.FileOutputStream in the JDK API Documentation

File classes

The FileInputStream and FileOutputStream classes in the java.io package
only provide basic functions for handling file input and output. The
java.io package provides the File class and RandomAccessFile class for more
advanced file support. The File class provides easy access to file attributes
and functions, while the RandomAccessFile class provides various methods
for reading and writing to and from a file.

File class: java.io.File
Java’s File class uses an abstract, platform-independent representation of
file and directory pathnames. The File class has three constructors listed
in the following table.

The File class also implements many important methods which check for
the existence, readability, writeability, type, size, and modification time of

Method Argument Description

close () Closes the file output stream and releases any
associated system resources.

finalize () Cleans up the connection to the file and calls
the close() method when there are no more
references to the stream.

getFD () Returns the file descriptor associated with the
stream.

write (byte[] b, int off,
int len)

Writes len bytes from the byte array starting at
offset off to the file output stream.

Constructor Argument Description

File (String path) Creates a new File instance by converting the
given pathname string into an abstract
pathname.

File (String parent,
String child)

Creates a new File instance from a parent
pathname string and a child pathname string.

File (File parent, String
child)

Creates a new File instance from a parent
abstract pathname and a child pathname string.

5-28 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

files and directories, as well as making new directories and renaming and
deleting files and directories.

See also

• java.io.File in the JDK API Documentation

RandomAccessFile class: java.io.RandomAccessFile
The RandomAccessFile class in the java.io package is more powerful than the
FileInputStream and FileOutputStream classes, which only provide
sequential access to a file. The RandomAccessFile class allows you to read
and write arbitrary bytes, text, and Java data types to or from any
specified location in a file. It has two constructors: RandomAccessFile(String
name, String mode) and RandomAccessFile(File file, String mode). The mode
argument indicates whether the RandomAccessFile object is used for reading
(“r”) or reading/writing (“rw”).

Method Argument Returns Description

delete () boolean Deletes the file or directories.

canRead () boolean Tests whether the application can read the file
denoted by the abstract pathname.

canWrite () boolean Tests whether the application can write to the
file.

renameTo (File dest) boolean Renames the file.

getName () String Returns the name string of the file or directory.

getParent () String Returns the pathname string of the parent
directory of the file or directory.

getPath () String Converts the abstract pathname into a
pathname string.

Constructor Argument Description

RandomAccessFile (String name,
String mode)

Creates a random access file stream to read
from, and optionally to write to, a file with the
specified name.

RandomAccessFile (File file,
String mode)

Creates a random access file stream to read
from, and optionally to write to, the file
specified by the File argument.

T h e J a v a c l a s s l i b r a r i e s 5-29

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

There are many powerful methods implemented by the RandomAccessFile
class. Some of these methods include:

See also

• java.io.RandomAccessFile in the JDK API Documentation

The StreamTokenizer class: java.io.StreamTokenizer

The StreamTokenizer class in the java.io package is used to read an input
stream and break it up or parse it into individual tokens that can then be
processed one by one. Tokens are groups of characters that represent a
number or word. The stream tokenizer can recognize strings, numbers,
identifiers, and comments. This technique of processing streams into
tokens is perhaps most commonly used in writing parsers, compilers, or
programs that process character input.

This class has one constructor, StreamTokenizer(Reader r), and defines the
four following constants.

The StreamTokenizer class uses instance variables nval, sval, and ttype to
hold the number value, string value, and type of the token respectively.

Method Argument Description

seek (long pos) Sets the file-pointer offset, measured from the
beginning of this file, at which the next read or
write occur.

read () Reads the next byte of data from the input
stream.

read (byte b[], int off,
int len)

Reads up to len bytes of data starting from
offset off from the input stream into an array.

readType () Reads the specified data type from a file, such
as readChar, readByte, readLong.

write (int b) Writes the specified byte to the file.

write (byte b[], int off,
int len)

Writes len bytes from the byte array starting at
offset off to the output stream.

length () Returns the length of the file.

close () Closes the file and releases any associated
system resources.

Constant Description

TT_EOF Indicates that the end of the file has been read.

TT_EOL Indicates that the end of the line has been read.

TT_NUMBER Indicates that a number token has been read.

TT_WORD Indicates that a word token has been read.

5-30 G e t t i n g S t a r t e d w i t h J a v a

J a v a 2 S t a n d a r d E d i t i o n p a c k a g e s

The StreamTokenizer class implements several methods used to define the
lexical syntax of tokens.

Follow these steps when using a stream tokenizer:

1 Create a StreamTokenizer object for a Reader.

2 Define how to process the characters.

3 Use the nextToken() method to get the next token.

4 Read the ttype instance variable to find the token type.

5 Read the value of the token from the instance variable.

6 Process the token.

7 Repeat steps 3 to 6 above until nextToken() returns
StreamTokenizer.TT_EOF.

See also

• java.io.StreamTokenizer in the JDK API Documentation

Method Argument Description

nextToken () Parses the next token from the input stream.
Returns TT_NUMBER if the next token is a number,
TT_WORD if the next token is a word or a
character.

parseNumbers () Parses the numbers.

lineno () Returns the current line number.

pushBack () Returns the current value in the ttype field on
the next call of the nextToken() method.

toString () Returns the string equivalent of the current
token.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-1

C h a p t e r

6
Chapter6Object-oriented programming

in Java
Object-oriented programming has been around since the introduction of
the language Simula ‘67 in 1967. It really came to the forefront of
programming paradigms in the mid-1980s, however.

Unlike traditional structured programming, object-oriented programming
places the data and the operations that pertain to the data within a single
data structure. In structured programming, the data and the operations on
the data are separate and data structures are sent to procedures and
functions to be operated on. Object-oriented programming solves many of
the problems inherent in this design because the attributes and operations
are part of the same entity. This more closely models the real world, in
which all objects have both attributes and activities associated with them.

Java is a pure object-oriented language, meaning that the outermost level
of data structure in Java is the object. There are no stand-alone constants,
variables, or functions in Java. Everything is accessed through classes and
objects. This is one of the nicest features of Java. Other hybrid
object-oriented languages have aspects of structured languages in
addition to object extensions. For example, C++ and Object Pascal are
object-oriented languages, but you can still write structured programming
constructs, which dilutes the effectiveness of the object-oriented
extensions. You just can’t do that in Java!

This chapter assumes you have some knowledge about programming in
other object-oriented languages. If you don’t, you should refer to other
sources to find a more in-depth explanation of object-oriented
programming. This chapter attempts to highlight and summarize the
object-oriented features of Java.

6-2 G e t t i n g S t a r t e d w i t h J a v a

C l a s s e s

Classes
Classes and objects are not the same thing. A class is a type definition,
whereas an object is a declaration of an instance of a class type. Once you
create a class, you can create as many objects based on that class as you
want. The same relationship exists between classes and objects as between
cherry pie recipes and cherry pies; you can make as many cherry pies as
you want from a single recipe.

The process of creating an object from a class is referred to as instantiating
an object or creating an instance of a class.

Declaring and instantiating classes

A class in Java can be very simple. Here is a class definition for an empty
class:

class MyClass {
}

While this class is not yet useful, it is legal in Java. A more useful class
would contain some data members and methods, which you’ll add soon.
First, examine the syntax for instantiating a class. To create an instance of
this class, use the new operator in conjunction with the class name. You
must declare an instance variable for the object:

MyClass myObject;

Just declaring an instance variable doesn’t allocate memory and other
resources for the object, however. Doing so creates a reference called
myObject, but it doesn’t instantiate the object. The new operator performs
this task.

myObject = new MyClass();

Notice that the name of the class is used as if it were a method. This is not
coincidental, as you will see in an upcoming section. Once this line of code
has executed, the member variables and methods of the class, which don’t
yet exist, can be accessed using the “.” operator

Once you have created the object, you never have to worry about
destroying it. Objects in Java are automatically garbage collected, which
means that when the object reference is no longer used, the virtual
machine automatically deallocates any resources allocated by the new
operator.

Data members

As stated above, a class in Java can contain both data members and
methods. A data member or member variable is a variable declared within

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-3

C l a s s e s

the class. A method is a function or routine that performs some task. Here
is a class that contains just data members:

public class DogClass {
 String name, eyeColor;
 int age;
 boolean hasTail;
}

This example creates a class called DogClass that contains data members:
name, eyeColor, age, and a flag called hasTail. You can include any data type
as a member variable of a class. To access a data member, you must first
create an instance of the class, then access the data using the “.” operator.

Class methods

You can also include methods in classes. In fact, there are no standalone
functions or procedures in Java. All subroutines are defined as methods of
classes. Here is an example of DogClass with a speak() method added:

public class DogClass {
 String name,eyeColor;
 int age;
 boolean hasTail;

 public void speak() {
 JOptionPane.showMessageDialog(null, "Woof! Woof!");
 }
}

Notice that when you define methods, the implementation for the method
appears directly below the declaration. This is unlike some other
object-oriented languages where the class is defined in one location and
the implementation code appears somewhere else. A method must specify
a return type and any parameters received by the method. The speak()
method takes no parameters. It also doesn’t return a value, so its return
type is void.

To call the method, you would access it just like you would access the
member variables; that is, using the .” operator. For example,

DogClass dog = new DogClass();
dog.age = 4;
dog.speak();

Constructors and finalizers

Every Java class has a special purpose method called a constructor. The
constructor always has the same name as the class and it can’t specify a
return value. The constructor allocates all the resources needed by the
object and returns an instance of the object. When you use the new

6-4 G e t t i n g S t a r t e d w i t h J a v a

C l a s s e s

operator, you are actually calling the constructor. You don’t need to
specify a return type for the constructor because the instance of the object
is always the return type.

Most object-oriented languages have a corresponding method called a
destructor that is called to deallocate all the resources that the constructor
allocated. But because Java deallocates all the resources for you
automatically, there is no destructor mechanism in Java.

There are situations, however, that require you to perform some special
cleanup that the garbage collector can’t handle as the class goes away. For
example, you might have opened some files in the life of the object and
you want to make sure the files are closed properly when the object is
destroyed. There is another special purpose method that can be defined
for a class called a finalizer. This method (if present) is called by the
garbage collector immediately before the object is destroyed. Therefore, if
there is any special cleanup that needs to be performed, the finalizer can
handle it for you. The garbage collector runs as a low priority thread in the
virtual machine, however, so you can never predict when it will actually
destroy your object. So, you shouldn’t put any time-sensitive code in the
finalizer because you can’t predict when it will be called.

Case study: A simple OOP example

In this section, you’ll see a simple example of defining classes and
instantiating objects. You’ll develop an application that creates two objects
(a dog and a man) and show their attributes on a form.

If you are completely new to JBuilder, you should put this chapter aside
and learn about JBuilder's integrated development environment before
you begin this sample. Begin with the Introducing JBuilder book, especially
the “Building an application” tutorial and the following chapters that
introduce the JBuilder integrated development environment. Also study
the early chapters of Designing Applications with JBuilder to learn about
using the UI designer.

You are ready to resume this chapter once you are comfortable
performing these tasks:

• Beginning an application using JBuilder’s Application wizard.

• Selecting components from the component palette and placing them on
the UI designer.

• Setting component properties using the Inspector.

• Switching between the editor and the UI designer in JBuilder’s content
pane.

• Using the editor.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-5

C l a s s e s

This is what the running sample application you will build looks like:

Figure 6.1 Sample application showing two instantiated objects

Follow these steps listed in this section to create a simple UI for this
sample application.

1 Start creating the application and designing its UI:

a Start a new project. Choose File|New Project to start the Project
wizard.

b Enter oop1 in the Project Name field and click Finish. A new project
opens.

c Choose File|New, click the General tab, and click the Application
icon to start the Application wizard.

d Accept the default class name. The package name will be oop1.

e Click Next and then Finish to create a Frame1.java and an
Application1.java file.

f Click the Design tab in the content pane to display the UI designer
for Frame1.java.

g Select contentPane in the structure pane. In the Inspector set the layout
property of contentPane to XYLayout (if you are a Personal user, set
layout to null). XYLayout and null are seldom ideal for an application,
but until you learn about using layouts, you can use them to create a
quick-and-dirty UI.

2 Place the needed components on the UI designer, using the above
screen shot as a reference:

a Click the Swing tab on the component palette and click the JTextField
component. (When you position your cursor over a component, a
tooltip appears labeling the component. Click the component labeled
javax.swing.JTextField.) Click in the UI designer and hold down the
mouse button as you draw the component onscreen. Repeat this step
five more times until you have two groups of three JTextField
components on your form.

6-6 G e t t i n g S t a r t e d w i t h J a v a

C l a s s e s

b Hold down the Shift key as you click each JTextField on the UI
designer so that all of them are selected. Select the text property in
the Inspector and delete the text that appears there. This will delete
all the text in each JTextField component.

c Change the name property value of each JTextField. Name the first
one txtfldDogName, the second txtfldDogEyeColor, the third
txtfldDogAge, the fourth txtfldManName, the fifth txtfldManEyeColor, and
the sixth txtfldManAge.

d Draw six JLabel components on the form, each one adjacent to a
JTextField component.

e Change the text property values for these components to label each
JTextField component appropriately. For example, the text property
of the JLabel at the top of the form should be Name, the second Eye
Color, and so on.

f Place two JCheckBox components on the form. Place the first one
below the first group of three JTextField components, and the second
check box beneath the second group of JTextField components.

g Select each JCheckBox component on the form in turn and change the
first one’s text property to Has Tail, and second one’s text property
to Is Married.

h Change the value of the name property for the first check box to
chkboxDog, and change the name of the second check box to chkboxMan.

i Place two JButton components on the form, one to the right of the top
group of components, and the second to the right of the bottom
group of components.

j Change the text property of the first button to Create Dog, and change
the text property of the second button to Create Man.

The final step is to save the project by choosing File|Save All.

You’re now ready to begin programming. First create a new class:

1 Choose File|New Class to start the Class wizard.

2 Keep the name of the package as oop1, specify the Class Name as
DogClass, and don’t change the Base Class.

3 Check only the Public and Generate Default Constructor options,
unchecking all other options.

4 Click OK.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-7

C l a s s e s

The Class wizard creates the DogClass.java file for you. Modify the code it
created so that your code looks like this:

package oop1;

public class DogClass {
 String name, eyeColor;
 int age;
 boolean hasTail;

 public DogClass() {
 name = "Snoopy";
 eyeColor = "Brown";
 age = 2;
 hasTail = true;
 }
}

You defined DogClass with some member variables. There is also a
constructor to instantiate DogClass objects.

Using the Class wizard, create a ManClass.java file by following the same
steps except specifying the Class Name as ManClass. Modify the resulting
code so that it looks like this:

package oop1;

public class ManClass {
 String name, eyeColor;
 int age;
 boolean isMarried;

 public ManClass() {
 name = "Steven";
 eyeColor = "Blue";
 age = 35;
 isMarried = true;
 }
}

The two classes are very similar. You’ll take advantage of this similarity in
an upcoming section.

Click the Frame1 tab at the top of content pane to return to the Frame1 class.
Click the Source tab at the bottom to return to open the editor. Declare two
instance variables as references to the objects. Here is the source listing of
the Frame1 variable declarations shown in bold; add the lines in bold to
your class:

public class Frame1 extends JFrame {
// Create a reference for the dog and man objects
 DogClass dog;
 ManClass man;

 JPanel contentPane;
 JPanel jPanel1 = new JPanel();
 . . .

6-8 G e t t i n g S t a r t e d w i t h J a v a

C l a s s e s

Click the Design tab at the bottom of content pane to return to the UI you
designed. Double-click the Create Dog button. JBuilder creates the
beginning of an event handler for that button and places your cursor
within the event handler code. Fill in the event handler code so that you
instantiate a dog object and fill in the dog text fields. Your code should
look like this:

void jButton1_actionPerformed(ActionEvent e) {
dog = new DogClass();
 txtfldDogName.setText(dog.name);
 txtfldDogEyeColor.setText(dog.eyeColor);
 txtfldDogAge.setText(Integer.toString(dog.age));
 chkboxDog.setSelected(true);
}

As the code shows, you are calling the constructor for the dog object and
then accessing its member variables.

Click the Design tab to return to the UI designer. Double-click the Create
Man button. JBuilder creates an event handler for the Create Man button.
Fill in the event handler so that it looks like this:

void jButton2_actionPerformed(ActionEvent e) {
man = new ManClass();
 txtfldManName.setText(man.name);
 txtfldManEyeColor.setText(man.eyeColor);
 txtfldManAge.setText(Integer.toString(man.age));
 chkboxMan.setSelected(true);
}

You can now compile and run your application. Choose Project|Make
Project “oop1.jpx” to compile it. If you have no errors, choose Run|Run
Project.

If all goes well, the form appears on your screen. When you click the
Create Dog button, a dog object is created and the dog values appear in the
dog fields. When you click the Create Man button, a man object is created
and the man values appear in the appropriate fields.

Class inheritance

The dog and man objects you created have many similarities. One of the
benefits of object-oriented programming is the ability to handle
similarities like this within a hierarchy. This ability is referred to as
inheritance. When a class inherits from another class, the child class
automatically inherits all the characteristics (member variables) and
behavior (methods) from the parent class. Inheritance is always additive;
there is no way to inherit from a class and get less than what the parent
class has.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-9

C l a s s e s

Inheritance in Java is handled through the keyword extends. When one
class inherits from another class, the child class extends the parent class.
For example,

public class DogClass extends MammalClass {
. . .
}

The items that men and dogs have in common could be said to be
common to all mammals; therefore, you can create a MammalClass to handle
these similarities. You can then remove the declarations of the common
items from DogClass and ManClass, declare them in MammalClass instead, and
then subclass DogClass and ManClass from MammalClass.

Using the Class wizard, create a MammalClass. Fill in the resulting code so
that it looks like this:

package oop1;

public class MammalClass {
 String name, eyeColor;
 int age;

 public MammalClass() {
 name = "The Name";
 eyeColor = "Brown";
 age = 0;
 }
}

Notice that the MammalClass has common characteristics from both the
DogClass and the ManClass. Now, rewrite DogClass and ManClass to take
advantage of inheritance.

Modify the code of DogClass so that it look like this:

package oop1;

public class DogClass extends MammalClass {

 boolean hasTail;

 public DogClass() {
 // implied super()
 name = "Snoopy";
 age = 2;
 hasTail = true;
 }
}

6-10 G e t t i n g S t a r t e d w i t h J a v a

C l a s s e s

Modify the code of ManClass so that it looks like this:

package oop1;

public class ManClass extends MammalClass{

 boolean isMarried;

 public ManClass() {
 name = "Steven";
 eyeColor = "Blue";
 age = 35;
 isMarried = true;
 }
}

Notice that DogClass doesn’t specifically assign an eyeColor value, but
ManClass does. DogClass doesn’t need to assign a value to eyeColor because
the dog Snoopy has brown eyes and DogClass inherits brown eyes from the
MammalClass, which declares an eyeColor variable and assigns it the value of
“Brown”. The man Steven, however, has blue eyes, so its necessary to
assign the value “Blue” to the eyeColor variable inherited from MammalClass.

Try compiling and running your project again. (Choosing Run|Run
Project will compile and then run your application.) You’ll see that the UI
of your program looks just as it did before, but now the dog and man objects
inherit all common member variables from MammalClass.

As soon as DogClass extends MammalClass, DogClass has all the member
variables and methods that the MammalClass has. In fact, even MammalClass is
inherited from another class. All classes in Java ultimately extend the
Object class; so if a class is declared that doesn’t extend another class, it
implicitly extends the Object class.

Classes in Java can inherit from only one class at a time (single inheritance).
Unlike Java, some languages (such as C++) allow a class to inherit from
several classes at once (multiple inheritance). A class can extend just one
class at a time. Although there is no restriction on how many times you
can use inheritance to extend the hierarchy, you must do so one extension
at a time. Multiple inheritance is a nice feature, but it leads to very
complex object hierarchies. Java has a mechanism that provides many of
the same benefits without so much complexity, as you’ll see later.

The MammalClass has a constructor that sets very practical and convenient
default values. It would be nice if the subclasses could access this
constructor.

In fact, they can. You can do this in Java two different ways. If you don’t
call the parent’s constructor explicitly, Java automatically calls the
parent’s default constructor for you as the first line of the child
constructor. The only way to prevent this behavior is to call one of the
parent’s constructors yourself as the first line of the child class constructor.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-11

C l a s s e s

Constructor calls are always chained like this, and you can’t defeat this
mechanism. This is a very nice feature of the Java language, because in
other object-oriented languages, failing to call the parent’s constructor is a
common bug. Java will always do this for you if you don’t. That is the
meaning of the comment in the first line of the DogClass constructor,
// implied super(). The MammalClass constructor is called at that point
automatically. This mechanism relies on the existence of a superclass
(parent class) constructor that takes no parameters. If the constructor
doesn’t exist and you don’t call one of the other constructors as the first
line of the child constructor, the class won’t compile.

Calling the parent’s constructor
Because you frequently want to call the superclass constructor explicitly,
there is a keyword in Java that makes this easy. super() will call the
parent’s constructor that has the appropriate supplied parameters.

It’s also possible to have more than one constructor in a class. When more
than one method with the same name exists within a single class, the
methods are referred to as overloaded. It’s common for a class to have
multiple constructors.

For the sample application, the change in the hierarchy is the only
difference between the first two versions of the sample. The instantiation
of the objects and the main form haven’t changed at all. However, the
design of the application is more efficient, because now if you must
modify any of the mammal characteristics, you can do so in the MammalClass
and just recompile the child classes. The changes you make flow to the
child classes.

Access modifiers

It’s important to understand when members (both variables and methods)
in the class are accessible. There are several options in Java to allow you to
closely tailor how accessible you want these members to be.

Usually you want to limit the scope of program elements, including class
members, as much as possible. The fewer places something is accessible,
the fewer places it can be accessed incorrectly.

There are four different access modifiers for class members in Java:
private, protected, public, and default (or the absence of any modifier). This
is slightly complicated by the fact that classes within the same package
have different access than classes outside the package. Therefore, here are
two tables that show both the accessibility and inheritability of classes and
member variables from within the same package and from outside the
package (packages are discussed in a later section).

6-12 G e t t i n g S t a r t e d w i t h J a v a

C l a s s e s

Access from within class’s package

This table shows how class members are accessed and inherited from with
respect to other members in the same package. For example, a member
that is declared to be private cannot be accessed by, or inherited from,
other members of the same package. On the other hand, members
declared using the other modifiers could be accessed by and inherited
from all other members of that package. All parts of the sample
application are part of the oop1 package, so you don’t have to worry about
accessing classes in another package.

Access outside of a package
The rules change if you access code outside of your class’s package:

For example, this table shows that a protected member could be inherited
from, but not accessed, by classes outside its package.

Note that in both access tables public members are available to anyone
who wants to access them (notice that constructors are always public),
whereas private members are never accessible nor inheritable outside the
class. So, you should declare any member variable or method you want to
keep internal to the class private.

A recommended practice in object-oriented programming is to hide
information within the class by making all of the member variables of the
class private and accessing them through methods that are in a specific
format called accessor methods.

Accessor methods

Accessor methods (sometimes called getters and setters) are methods that
provide the outward public interface to the class while keeping the actual
data storage private to the class. This is a good idea because you can, at

Access Modifier Inherited Accessible

default (no modifier) Yes Yes

Public Yes Yes

Protected Yes Yes

Private No No

Access Modifier Inherited Accessible

default (no modifier) No No

Public Yes Yes

Protected Yes No

Private No No

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-13

C l a s s e s

any time in the future, change the internal representation of the data in the
class without touching the methods that actually set those internal values.
As long as you don’t change the public interface to the class, you don’t
break any code that relies on that class and its public methods.

Accessor methods in Java usually come in pairs: one to get the internal
value, and another to set the internal value. By convention, the Get
method uses the internal private variable name with “get” as a prefix. The
Set method does the same with “set”. A read-only property would only
have a Get method. Usually, Boolean Get methods use “is” or “has” as the
prefix instead of “get”. Accessor methods also make it easy to validate the
data that is assigned to a particular member variable.

Here is an example. In your DogClass, make all of the internal member
variables private and add accessor methods to access the internal values.
DogClass creates just one new member variable, tail.

package oop1;

public class DogClass extends MammalClass{

 // accessor methods for properties
 // Tail
 public boolean hasTail() {
 return tail;
 }

 public void setTail(boolean value) {
 tail = value;
 }

 public DogClass() {
 setName("Snoopy");
 setAge(2);
 setTail(true);
 }

 private boolean tail;
}

The variable tail has been moved to the bottom of the class and now is
declared as private. The location of the definition is not important, but it’s
common in Java to place the private members of the class at the bottom of
the class definition (after all, you can’t get to them outside the class;
therefore, if you are reading the code, you are interested in the public
aspects first). DogClass now has public methods to retrieve and set the
value of tail. The getter is hasTail() and setter is setTail().

6-14 G e t t i n g S t a r t e d w i t h J a v a

C l a s s e s

Follow the same patterns and revise ManClass so that it looks like this:

package oop1;

 public class ManClass extends MammalClass {

 public boolean isMarried() {
 return married;
 }

 public void setMarried(boolean value) {
 married = value;
 }

 public ManClass() {
 setName("Steven");
 setAge(35);
 setEyeColor("Blue");
 setMarried(true);
 }

 private boolean married;
}

Note that the constructors for these two classes now use accessor methods
to set the values of the variables of MammalClass. But the MammalClass doesn’t
have accessor methods for setting those values yet, so you must add them
to MammalClass.

Change MammalClass so that its code looks like this:

public class MammalClass {

 // accessor methods for properties
 // name
 public String getName() {
 return name;
 }

 public void setName(String value) {
 name = value;
 }

 // eyecolor
 public String getEyeColor() {
 return eyeColor;
 }

 public void setEyeColor(String value) {
 eyeColor = value;
 }

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-15

C l a s s e s

 // sound
 public String getSound() {
 return sound;
 }

 public void setSound(String value) {
 sound = value;
 }

 // age
 public int getAge() {
 return age;
 }

 public void setAge(int value) {
 if (value > 0) {
 age = value;
 }
 else
 age = 0;
 }

 public MammalClass() {
 setName("The Name");
 setEyeColor("Brown");
 setAge(0);
 }

 private String name, eyeColor, sound;
 private int age;
}

Also note that a new sound member variable has been added to MammalClass.
It too has accessor methods. Because DogClass and ManClass extend
MammalClass, they also have a sound property.

The event handlers in Frame1.java should also use the accessors. Modify
the event handlers so they look like this:

 void jButton1_actionPerformed(ActionEvent e) {
 dog = new DogClass();
 txtfldDogName.setText(dog.getName());
 txtfldDogEyeColor.setText(dog.getEyeColor());
 txtfldDogAge.setText(Integer.toString(dog.getAge()));
 chkboxDog.setSelected(true);
 }

 void jButton2_actionPerformed(ActionEvent e) {
 man = new ManClass();
 txtfldManName.setText(man.getName());
 txtfldManEyeColor.setText(man.getEyeColor());
 txtfldManAge.setText(Integer.toString(man.getAge()));
 chkboxMan.setSelected(true);
 }

6-16 G e t t i n g S t a r t e d w i t h J a v a

C l a s s e s

Abstract classes

It’s possible to declare a method in a class as abstract, meaning that there
will be no implementation for the method within this class, but all classes
that extend this class must provide an implementation.

For example, suppose you want all mammals to have the ability to report
their top running speed, but you want each mammal to report a different
speed. In the mammal class you should create an abstract method called
speed(). Add a speed() method to MammalClass just above the private member
variable declarations at the bottom of the source code:

abstract public void speed();

Once you have an abstract method in a class, the entire class must also be
declared as abstract. This indicates that a class that includes at least one
abstract method (and is therefore an abstract class) cannot be instantiated.
So add the abstract keyword to the beginning of the MammalClass
declaration so that it looks like this:

abstract public class MammalClass {

 public String getName() {
 ...

Now each class that extends MammalClass must implement a speed()
method. So add this method to the DogClass code below the DogClass()
constructor:

public void speed() {
 JOptionPane.showMessageDialog(null, "30 mph", "Dog Speed", 1);
}

Add this speed() method to the ManClass code:

public void speed() {
 JOptionPane.showMessageDialog(null, "17 mph", "Man Speed", 1);
}

Because each speed() method creates a JOptionPane component, which is a
Swing component, add this statement just after the package statement to
the top of both DogClass and ManClass:

import javax.swing.*;

This statement makes the entire Swing library available to these classes.
You’ll read more about import statements soon.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-17

P o l y m o r p h i s m

Polymorphism
Polymorphism is the ability for two separate yet related classes to receive
the same message but to act on it in their own way. In other words, two
different (but related) classes can have the same method name, but they
implement the method in different ways.

Therefore, you can have a class method that is also implemented in a child
class, and you can access the code from the parent’s class (similar to the
automatic constructor chaining discussed earlier). Just as in the
constructor example, you can use the keyword super to access any
methods or member variables of the superclass.

Here is a simple example. We have two classes, Parent and Child.

class Parent {
 int aValue = 1;
 int someMethod(){
 return aValue;
 }
}

class Child extends Parent {
 int aValue; // this aValue is part of this class
 int someMethod() { // this overrides Parent's method
 aValue = super.aValue + 1; // access Parent's aValue with super
 return super.someMethod() + aValue;
 }
}

The someMethod() of Child overrides the someMethod() of Parent. A method of
a child class with the same name as a method in the parent class, but that
is implemented differently and therefore has different behavior is an
overridden method.

Can you see how the someMethod() of the Child class would return the value
of 3? The method accesses the aValue variable of Parent using the super
keyword, adds the value of 1 to it, and assigns the resulting value of 2 to
its own aValue variable. The last line of the method calls the someMethod() of
Parent, which simply returns Parent.aValue with a value of 1. To that, it
adds the value of Child.aValue, which was assigned the value of 2 in the
previous line. So 1 + 2 = 3.

Using interfaces

An interface is much like an abstract class but with one important
difference: an interface cannot include any code. The interface mechanism
in Java is meant to replace multiple inheritance.

6-18 G e t t i n g S t a r t e d w i t h J a v a

P o l y m o r p h i s m

An interface is a specialized class declaration that can declare constants
and method declarations, but not method implementations. You can
never put code in an interface.

Here is an interface declaration for our sample application:

You can use the JBuilder Interface wizard to start an interface:

1 Choose File|New to open the object gallery and click the General tab.
Double-click the Interface icon to display the Interface wizard.

2 Specify the name of the interface as SoundInterface, keeping all other
values unchanged. (You can uncheck the Generate Header Comments
to omit headers.)

3 Choose OK to generate the new interface.

Within the new SoundInterface, add a speak() method declaration so that
the interface looks like this:

package oop1;

public interface SoundInterface {

 public void speak();
}

Note that the interface keyword is used instead of class. All methods
declared in an interface are public by default, so there is no need to specify
accessibility. A class can implement an interface by using the implements
keyword. Also, a class can extend only one other class, but a class can
implement as many interfaces as necessary. This is how situations that are
usually handled by multiple inheritance in other languages are handled
by interfaces in Java. In many cases, you can treat the interface as if it were
a class. In other words, you can treat objects that implement an interface as
subclasses of the interface for convenience. Note, however, that you can
only access the methods defined by that interface if you are casting an
object that implements the interface.

The following is an example of both polymorphism and interfaces. We
want the MammalClass definition to implement the new SoundInterface. You
do that by adding the words implements SoundInterface to the class
definition. Then, you must define and implement a speak() method for
MammalClass. Modify your MammalClass so that it implements SoundInterface
and a speak() method. Here is the code for MammalClass in its entirety:

package oop1;

import javax.swing.*;

abstract public class MammalClass implements SoundInterface {

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-19

P o l y m o r p h i s m

 // accessor methods for properties
 // name
 public String getName() {
 return name;
 }

 public void setName(String value) {
 name = value;
 }

 // eyecolor
 public String getEyeColor() {
 return eyeColor;
 }

 public void setEyeColor(String value) {
 eyeColor = value;
 }

 // sound
 public String getSound() {
 return sound;
 }

 public void setSound(String value) {
 sound = value;
 }

 // age
 public int getAge() {
 return age;
 }

 public void setAge(int value) {
 if (value > 0)
 {
 age = value;
 }
 else
 age = 0;
 }

 public MammalClass() {
 setName("The Name");
 setEyeColor("Brown");
 setAge(0);
 }

public void speak() {
 JOptionPane.showMessageDialog(null, this.getSound(),
 this.getName() + " Says", 1);
 }

6-20 G e t t i n g S t a r t e d w i t h J a v a

P o l y m o r p h i s m

 abstract public void speed();

 private String name, eyeColor, sound;
 private int age;
}

The MammalClass definition now implements the SoundInterface fully.
Because the speak() method implementation uses the JOptionPane
component, which is part of the Swing library, you must add an import
statement near the top of the file:

import javax.swing.*;

This import statement makes the entire Swing library available to
MammalClass. You’ll read more about import statements in “The import
statement” on page 6-24.

Because DogClass and ManClass extend MammalClass, they now automatically
have access to the speak() method defined in MammalClass. They don’t have
to specifically implement speak() themselves. The value of the sound
variable passed to the speak() method is set in the constructors of DogClass
and ManClass. Here is how the DogClass class should look:

package oop1;
import javax.swing.*;

public class DogClass extends MammalClass{

 public boolean hasTail() {
 return tail;
 }

 public void setTail(boolean value) {
 tail = value;
 }

 public DogClass() {
 setName("Snoopy");
 setSound("Woof, Woof!");
 setAge(2);
 setTail(true);
 }

 public void speed() {
 JOptionPane.showMessageDialog(null, "30 mph", "Dog Speed", 1);
 }

 private boolean tail;
}

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-21

P o l y m o r p h i s m

This is how ManClass should look:

package oop1;
import javax.swing.*;

 public class ManClass extends MammalClass {

 public boolean isMarried() {
 return married;
 }

 public void setMarried(boolean value) {
 married = value;
 }

 public ManClass() {
 setName("Steven");
 setEyeColor("Blue");
 setSound("Hello there! I'm " + this.getName() + ".");
 setAge(35);
 setMarried(true);
 }

 public void speed() {
 JOptionPane.showMessageDialog(null, "17 mph", "Man Speed", 1);
 }

 private boolean married;
}

Adding two new buttons

Although you’ve added speak() and speed() methods to the sample
application, so far the application never calls them. To change this, add
two more buttons to the Frame1.java class:

1 Click the Frame1 tab in the content pane.

2 Click the Design tab to display the UI designer.

3 Place two additional buttons on the form.

4 Change the value of text property of the first button to Speed in the
Inspector, and change the value of the text property of the second
button to Speak.

6-22 G e t t i n g S t a r t e d w i t h J a v a

P o l y m o r p h i s m

Figure 6.2 New version of the sample application with Speed and Speak buttons added

Click the Source tab to return to the Frame1.java code and add code shown
here in bold to the class definition:

// Create a reference for the objects
DogClass dog;
ManClass man;

//Create an Array of SoundInterface
SoundInterface soundList[] = new SoundInterface[2];

//Create an Array of Mammal
MammalClass mammalList[] = new MammalClass[2];

You have added code that creates two arrays: one for Mammals and one
for SoundInterfaces.

Also add code to the Create Dog and Create Man event handlers that add
references to the dog and man objects to the arrays:

void button1_actionPerformed(ActionEvent e) {
 dog = new DogClass();
 txtfldDogName.setText(dog.getName());
 txtfldDogEyeColor.setText(dog.getEyeColor());
 txtfldDogAge.setText(Integer.toString(dog.getAge()));
 chkboxDog.setSelected(true);
 mammalList[0] = dog;
 soundList[0] = dog;
}

void button2_actionPerformed(ActionEvent e) {
 man = new ManClass();
 txtfldManName.setText(man.getName());
 txtfldManEyeColor.setText(man.getEyeColor());
 txtfldManAge.setText(Integer.toString(man.getAge()));
 chkboxMan.setSelected(true);
 mammalList[1] = man;
 soundList[1] = man;
 }

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-23

P o l y m o r p h i s m

Return to the UI designer and double-click the Speed button, and fill in
the event handler JBuilder starts for you so that the code looks like this:

void button3_actionPerformed(ActionEvent e) {
for (int i = 0; i <= 1; i++) {
 mammalList[i].speed();
 }
}

The code loops through the list of mammals held in the array (all two of
them!) and tells each object to display its speed. The first time through the
list, the dog displays its speed, the second time through the list, the man
displays its speed. This is polymorphism in action - two separate but
related objects receiving the same message and reacting to it in their own
way.

The code for the Speak button is very similar.

void button4_actionPerformed(ActionEvent e) {
for (int i = 0; i <= 1; i++) {
 soundList[i].speak();
 }
}

Choose File|Save All to save all your changes.

You can see that you can treat the SoundInterface as a class when it is
convenient. Note that the interface gives you many of the benefits of
multiple inheritance without the added complexity.

Running your application

You’re ready to run your modified application. Choose Run|Run Project
to recompile your project and then run it.

When your application begins running, be sure that you click the Create
Dog and Create Man buttons to create the dog and man objects before you
try the Speed and Speak buttons or you will get a NullPointerException.

Once your objects exist and you click the Speed button, a message box
appears reporting the speed of the first mammal in the mammalList array,
the dog. When you click OK to remove the message box, the second
message box appears. It reports the speed of the second mammal, the
man. Clicking the Speak button results in similar behavior, but the
messages displayed are sounds each mammal might make.

6-24 G e t t i n g S t a r t e d w i t h J a v a

J a v a p a c k a g e s

Java packages
To facilitate code reuse, Java allows you to group several class definitions
together in a logical grouping called a package. If, for instance, you create a
group of business rules that model the work processes of your
organization, you might want to place them together in a package. This
makes it easier to reuse code that you have previously created.

The import statement

The Java language comes with many predefined packages. For instance,
the java.applet package contains classes for working with Java applets:

public class Hello extends java.applet.Applet {

This code refers to the class called Applet in the Java package java.applet.
You can imagine that it might get quite tedious to have to repeat the entire
full class name java.applet.Applet every time you refer to this class.
Instead, Java offers an alternative. You can choose to import a package
you will use frequently:

import java.applet.*;

This tells the compiler “if you see a class name you do not recognize, look
in the java.applet package for it.” Now, when you declare a new class, you
can say,

public class Hello extends Applet {

This is more concise. You have a problem, however, if you have two
classes by the same name defined in two different imported packages. In
this case, you must use the fully qualified name.

Declaring packages

Creating your own packages is almost as easy as using them. For instance,
if you want to create a package called mypackage, you would simply use a
package statement at the beginning of your file:

package mypackage;

public class Hello extends java.applet.Applet {

 public void init() {
 add(new java.awt.Label("Hello World Wide Web!"));
 }

} // end class

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 6-25

J a v a p a c k a g e s

Now, any other program can access the classes declared in mypackage with
the statement:

import mypackage.*;

Remember, this file should be in a subdirectory called mypackage. This
allows your Java compiler to easily locate your package. JBuilder’s Project
wizard will automatically set the directory to match the project name.
Also, keep in mind that the base directory of any package you import
must be listed in the Source Path of the JBuilder IDE or the Source Path of
your project. This is good to remember if you decide to relocate a package
to a different base directory.

For more information about working with packages in JBuilder, see
“Packages” in Building Applications with JBuilder.

6-26 G e t t i n g S t a r t e d w i t h J a v a

T h r e a d i n g t e c h n i q u e s 7-1

C h a p t e r

7
Chapter7Threading techniques

Threads are a part of every Java program. A thread is a single sequential
flow of control within a program. It has a beginning, a sequence, and an
end. A thread cannot run on its own; it runs within a program. If your
program is a single sequence of execution, you don’t need to set up a
thread explicitly, the Java Virtual Machine (VM) will take care of this for
you.

One of the powerful aspects of the Java language is that you can easily
program multiple threads of execution to run concurrently within the
same program. For example, a web browser can download a file from one
site, and access another site at the same time. If the browser can’t do two
simultaneous tasks, you’d need to wait until the file had finished
downloading before you could browse to another site.

The Java VM always has multiple threads, called daemon threads, running.
For example, a continually running daemon thread performs garbage
collection tasks. Another daemon thread handles mouse and keyboard
events. It is possible for your program to lock up one of the Java VM
threads. If your program appears to be dead, with no events being sent to
your program, try using threads.

The lifecycle of a thread
Every thread has a definite lifecycle — it starts and stops, it can pause and
wait for an event, and it can notify another thread while it is running. This
section will introduce some of the more common aspects of the thread
lifecycle.

7-2 G e t t i n g S t a r t e d w i t h J a v a

T h e l i f e c y c l e o f a t h r e a d

Customizing the run() method

Use the run() method to implement the thread’s running behavior. This
behavior can be anything a Java statement can accomplish — calculations,
sorting, animations, etc.

You can use one of two techniques to implement the run() method for a
thread:

• Subclass the java.lang.Thread class
• Implement the java.lang.Runnable interface

Subclassing the Thread class
If you are creating a new class whose objects you want to execute in
separate threads, you need to subclass the java.lang.Thread class. The
Thread class’s default run() method does not do anything, so your class will
need to override the run() method. The run() method is the the first thing
that executes when a thread is started.

As an example, the following class, CountThread, subclasses Thread and
overrides its run() method. In this example, the run() method identifies a
thread and prints its name to the screen. The for loop counts integers from
the start value to the finish value and prints each count to the screen.
Then, before the loop finishes execution, the method prints a string that
indicates the thread has finished executing.

public class CountThread extends Thread {
 private int start;
 private int finish;
 public CountThread(int from, int to) {
 this.start = from;
 this.finish = to;
 }

 public void run() {
 System.out.println(this.getName()+ " started executing...");
 for (int i = start; i <= finish; i++) {
 System.out.print (i + " ");
 }
 System.out.println(this.getName() + " finished executing.");
 }
}

To test the CountThread class, you can create a test class:

public class ThreadTester {
 static public void main(String[] args) {
 CountThread thread1 = new CountThread(1, 10);
 CountThread thread2 = new CountThread(20, 30);
 thread1.start();
 thread2.start();
 }
}

T h r e a d i n g t e c h n i q u e s 7-3

T h e l i f e c y c l e o f a t h r e a d

The main() method in the test application creates two CountThread objects:
thread1 that counts from 1 to 10, and thread2 that counts from 20 to 30. Both
threads are then started by calling their start() methods. The output from
this test application could look like this:

Thread-0 started executing...
1 2 3 4 5 6 7 8 9 10 Thread-0 finished executing.
Thread-1 started executing...
20 21 22 23 24 25 26 27 28 29 30 Thread-1 finished executing.

Notice that the output does not show the thread names as thread1 and
thread2. Unless you specifically assign a name to a thread, Java will
automatically give it a name of the form Thread-n, where n is a unique
number, starting with 0. You can assign a name to a thread in the class
constructor or with the setName(String) method.

In this example, Thread-0 started executing first and finished first.
However, it could have started first and finished last, or partially started
and been interrupted by Thread-1. This is because threads in Java are not
guaranteed to execute in any particular sequence. In fact, each time you
execute ThreadTester, you might get a different output. Basically, the
process of scheduling threads is controlled by the Java thread scheduler,
and not the programmer. For more information, see “Thread priority” on
page 7-7.

Implementing the Runnable interface
If you want objects of an existing class to execute in their own threads, you
can implement the java.lang.Runnable interface. This interface adds
threading support to classes that do not inherit from the Thread class. It
provides only one method, the run() method, which you have to
implement for your class.

Note If your class subclasses a class other than Thread, for example, Applet, you
should use the Runnable interface to create threads.

To create a new CountThread class that implements the Runnable interface,
you need to change the class definition of the CountThread class. The class
definition code, with the changes highlighted in bold-faced type, would
look like this:

public class CountThread implements Runnable {

You would also have to change the way the name of the thread is
obtained. Because you are not instantiating the class CountThread, you
cannot call the getName() method of CountThread’s superclass, in this case,
java.lang.Object. This method is not available. Instead, you need to
specifically use the Thread.currentThread() method, which returns the
thread’s name in a format that is slightly different from the getName()
method.

7-4 G e t t i n g S t a r t e d w i t h J a v a

T h e l i f e c y c l e o f a t h r e a d

The entire class, with changes highlighted in bold-faced type, would then
look like this:

public class CountThread implements Runnable {
 private int start;
 private int finish;

 public CountThread(int from, int to) {
 this.start = from;
 this.finish = to;
 }

 public void run() {
 System.out.println(Thread.currentThread() + " started executing...");
 for (int i=start; i <= finish; i++) {
 System.out.print (i + " ");
 }
 System.out.println(Thread.currentThread() + " finished executing.");
 }
}

The test application would need to change the way its objects are created.
Instead of instantiating CountThread, the application needs to create a
Runnable object from the new class and pass it to one of the thread’s
constructors. The code, with the changes highlighted in bold-faced type,
would look like this:

public class ThreadTester {
 static public void main(String[] args) {
 CountThreadRun thread1 = new CountThreadRun(1, 10);
 new Thread(thread1).start();
 CountThreadRun thread2 = new CountThreadRun(20, 30);
 new Thread(thread2).start();
 }
}

The output from this program would look like this:

Thread[Thread-0,5,main] started executing...
1 2 3 4 5 6 7 8 9 10 Thread[Thread-0,5,main] finished executing.
Thread[Thread-1,5,main] started executing...
20 21 22 23 24 25 26 27 28 29 30 Thread[Thread-1,5,main] finished executing.

Thread-0 is the name of the thread, 5 is the priority the thread was given
when it was created, and main is the default ThreadGroup to which the thread
was assigned. (The priority and the group are assigned by the Java VM if
none are specified.)

See also

• “Thread priority” on page 7-7

• “Thread groups” on page 7-8

T h r e a d i n g t e c h n i q u e s 7-5

T h e l i f e c y c l e o f a t h r e a d

Defining a thread

The Thread class provides seven constructors. These constructors combine
the following three parameters in various ways:

• A Runnable object whose run() method will execute inside the thread.

• A String object to identify the thread.

• A ThreadGroup object to assign the thread to. The ThreadGroup class
organizes groups of related threads.

If you want to associate state with a thread, use a ThreadLocal object when
you create the thread. This class allows each thread to have its own
independently initialized copy of a private static variable, for example, a
user or transaction ID.

Starting a thread

To start a thread call the start() method. This method creates the system
resources necessary to run the thread, schedules the thread, and calls the
thread’s run() method.

After the start() method returns, the thread is running and is in a
runnable state. Because most computers have only a single CPU, the Java
VM must schedule threads. For more information see “Thread priority”
on page 7-7.

Constructor Description

Thread() Allocates a new Thread object.

Thread(Runnable target) Allocates a new Thread object so that it has
target as its run object.

Thread(Runnable target, String name) Allocates a new Thread object so that it has
target as its run object and the specified name
as its name.

Thread(String name) Allocates a new Thread object so that it has the
specified name as its name.

Thread(ThreadGroup group,
Runnable target)

Allocates a new Thread object so that it belongs
to the thread group referred to by group and
has target as its run object.

Thread(ThreadGroup group,
Runnable target, String name)

Allocates a new Thread object so that it has
target as its run object, the specified name as its
name, and belongs to the thread group
referred to by group.

Thread(ThreadGroup group,
String name)

Allocates a new Thread object so that it belongs
to the thread group referred to by group and
has the specified name as its name.

7-6 G e t t i n g S t a r t e d w i t h J a v a

T h e l i f e c y c l e o f a t h r e a d

Making a thread not runnable

To put a thread into a not runnable state, use one of following techniques:

• A sleep() method: these methods allow you to specify a specific
number of seconds and nanoseconds to not run.

• The wait() method: this method causes the current thread to wait for a
specified condition to be met.

• Block the thread on input or output.

When the thread is not runnable, the thread will not run, even if the
processor becomes available. To exit the not runnable state, the condition
for the entrance to the not runnable state most be met. For example, if you
used the sleep() method, the specified number of seconds must have
passed. If you used the wait() method, another object must tell the waiting
thread (with notify() or notifyAll()) of a change in condition. If a thread is
blocked by input or output, the input or output must finish.

You can also use the join() method to have a thread wait for an executing
thread to finish. You call this method for the thread being waited on. You
can specify a timeout for a thread by passing a parameter to the method in
milliseconds. The join() method waits on the thread until either the
timeout has expired or the thread has terminated. This method works in
conjunction with the isAlive() method — isAlive() returns true if the
thread has been started and not stopped.

Note that the suspend() and resume() methods have been deprecated. The
suspend() method is deadlock-prone. If the target thread is locking a
monitor that protects a critical system resource when it is suspended, no
thread can access this resource until the target thread is resumed. A
monitor is a Java object used to verify that only one thread at a time is
executing the synchronized methods for the object. For more information,
see “Synchronizing threads” on page 7-7.

Stopping a thread

You can no longer stop a thread with the stop() method. This method has
been deprecated, as it is unsafe. Stopping a thread will cause it to unlock
all of the monitors it has locked. If an object previously protected by one of
these monitors is in an inconsistent state, other threads will see that object
as inconsistent. This can cause your program to be corrupted.

To stop a thread, terminate the run() method with a finite loop.

For more information, see the topic in the Java 2 SDK, Standard Edition
Documentation called “Why are Thread.stop, Thread.suspend,
Thread.resume and runtime.runFinalizersOnExit Deprecated?”

T h r e a d i n g t e c h n i q u e s 7-7

T h r e a d p r i o r i t y

Thread priority
When a Java thread is created, it inherits its priority from the thread that
created it. You can set a thread’s priority using the setPriority() method.
Thread priorities are represented as integer values ranging from
MIN_PRIORITY to MAX_PRIORITY (constants in the Thread class). The thread with
the highest priority is executed.

When that thread stops, yields, or becomes not runnable, a lower priority
thread will be executed. If two threads of the same priority are waiting,
the Java scheduler will choose one of them to run in a round-robin
fashion. The thread will run until:

• A higher priority thread becomes runnable.

• The thread yields, by use of the yield() method, or its run() method
exits.

• Its time allotment has expired. This only applies to systems that
support time slicing.

This type of scheduling is based on a scheduling algorithm called fixed
priority scheduling. Threads are run based on their priority when compared
to other threads. The thread with the highest priority will always be
running.

Time slicing

Some operating systems use a scheduling mechanism knows as
time-slicing. Time-slicing divides the CPU into time slots. The system gives
the highest priority threads that are of equal priority time to run, until one
or more of them finishes, or until a higher priority thread is in a runnable
state. Because time-slicing is not supported on all operating systems, your
program should not depend on a time-slicing scheduling mechanism.

Synchronizing threads
One of the central problems of multithreaded computing is handling
situations where more than one thread has access to the same data
structure. For example, if one thread was trying to update the elements in
a list, while another thread was simultaneously trying to sort them, your
program could deadlock or produce incorrect results. To prevent this
problem, you need to use thread synchronization.

The simplest way to prevent two objects from accessing the same method
at the same time is to require a thread to obtain a lock. While a thread
holds the lock, another thread that needs a lock has to wait until the first
thread releases the lock. To keep a method thread-safe, use the synchronized

7-8 G e t t i n g S t a r t e d w i t h J a v a

T h r e a d g r o u p s

keyword when declaring methods that can only be executed by one
thread at a time. Note than you can also synchronize on an object.

For example, if you create a swap() method that swaps values using a local
variable and you create two different threads to execute the method, your
program could produce incorrect results. The first thread, due to the Java
scheduler, might only be able to execute the first half of the method. Then,
the second thread might be able to execute the entire method, but using
incorrect values (since the first thread did not complete the operation).
The first thread would then return to finish the method. In this case, it
would appear as if the swapping of values never took place. To prevent
this from happening, use the synchronized keyword in your method
declaration.

As a basic rule, any method that modifies an object’s property should be
declared synchronized.

Thread groups
Every Java thread is a member of a thread group. A thread group collects
multiple threads into a single object and manipulates all those threads at
once. Thread groups are implemented by the java.lang.ThreadGroup class.

The runtime system puts a thread into a thread group during thread
construction. The thread is either put into a default group or into a thread
group you specify when the thread is created. You cannot move a thread
into a new group once the thread has been created.

If you create a thread without specifying a group name in its constructor,
the runtime system places the new thread in the same group as the thread
that created it. Usually, unspecified threads are put into the main thread
group. However, if you create a thread in an applet, the new thread might
be put into a thread group other than main, depending on the browser or
viewer the applet is running in.

If you construct a thread with a ThreadGroup, the group can be:

• A name of your own creation

• A group created by the Java runtime

• A group created by the application in which your applet is running

To obtain the name of the group your thread is part of, use the
getThreadGroup() method. Once you know a thread’s group, you can
determine what other threads are in the group and manipulate them all at
once.

S e r i a l i z a t i o n 8-1

C h a p t e r

8
Chapter8Serialization

Object serialization is the process of storing a complete object to disk or
other storage system, ready to be restored at any time. The process of
restoring the object is known as deserialization. In this section, you’ll learn
why serialization is useful and how Java implements serialization and
deserialization.

An object that has been serialized is said to be persistent. Most objects in
memory are transient, meaning that they go away when their references
drop out of scope or the computer loses power. Persistent objects exist as
long as there is a copy of them stored somewhere on a disk, tape, or in
ROM.

Why serialize?
Traditionally, saving data to a disk or other storage device required that
you define a special data format, write a set of functions to write and read
that format, and create a mapping between the file format and the format
of your data. The functions to read and write data were either simple and
lacked extensibility, or they were complex and difficult to create and
maintain.

Java is completely based around objects and object-oriented programming
and provides a storage mechanism for objects in the form of serialization.
Using the Java way of doing things, you no longer have to worry about
details of file formats and input/output (I/O). Instead, you can
concentrate on solving your real-world tasks by designing and
implementing objects. If, for instance, you make a class persistent and
later add new fields to it, you don’t have to worry about modifying
routines that read and write the data for you. All fields in a serialized
object will automatically be written and restored.

8-2 G e t t i n g S t a r t e d w i t h J a v a

J a v a s e r i a l i z a t i o n

Java serialization
Serialization first appeared as a feature of JDK 1.1. Java’s support for
serialization consists of the Serializable interface, the ObjectOutputStream
class and the ObjectInputStream class, as well as a few supporting classes
and interfaces. We’ll examine all three of these items as we demonstrate
an application that can save user information to a disk and read it back.

Suppose, for instance, you wanted to save information about a particular
user as shown here.

Figure 8.1 Saving a user name and password

After the user types in his or her name and password into the appropriate
fields, the application should save information about this user to disk. Of
course, this is a very simple example, but you can easily imagine saving
data about user application preferences, the last document opened, and so
on.

Using JBuilder, you can design a user interface like the one shown above.
See the Designing Applications with JBuilder book if you need help with this
task. Name the Name text field textFieldName, and the password field
passwordFieldName. Besides the two labels you can see, add a third one near
the bottom of the frame and name it labelOutput.

Using the Serializable interface

Create a new class that represents the current user. It must have properties
that represent the user’s name and the user’s password.

To create the new class,

1 Choose File|New Class to display the Class wizard.

2 In the Class Information section, specify the new class name as
UserInfo. Leave the other fields unchanged.

3 In the Options section, check just the Public and Generate Default
Constructor options, unchecking all others.

S e r i a l i z a t i o n 8-3

J a v a s e r i a l i z a t i o n

4 Choose OK.

The Class wizard creates the new class file for you and adds it to the
project. Modify the generated code so that it looks like this:

package serialize;

public class UserInfo implements java.io.Serializable {
 private String userName = "";
 private String userPassword = "";

 public UserInfo() {
 }

 public String getUserName() {
 return userName;
 }

 public void setUserName(String s) {
 userName = s;
 }

 public String getUserPassword() {
 return userPassword;
 }

 public void setUserPassword(String s) {
 userPassword = s;
 }
}

You’ve added a variable that holds the user’s name and another for the
user’s password. You’ve also added accessor methods to both fields.

You’ll note that the UserInfo class implements the java.io.Serializable
interface. Serializable is known as a tagging interface because it specifies no
methods to be implemented, but merely “tags” its objects as being of a
particular type.

Any object that you expect to serialize must implement this the
Serializable interface. This is critical because the techniques used later in
this chapter won’t work otherwise. If, for instance, you try to serialize an
object that does not implement this interface, a NotSerializableException
will be raised.

At this point, you should import the java.io package so that your
application has access to the input and output classes and interfaces to
needs to write and read objects. Add this import statement to those at the
top of your frame class:

import java.io.*

8-4 G e t t i n g S t a r t e d w i t h J a v a

U s i n g o u t p u t s t r e a m s

Using output streams
Before you serialize the UserInfo object, you must instantiate it and set it
up with the values that the user enters into the text fields. When the user
enters information in the fields and clicks the Serialize button, the values
the user entered are stored in the UserInfo object instance:

void jButton1_actionPerformed(ActionEvent e) {
 UserInfo user = new UserInfo(); // instantiate a user object
 user.setUserName(textFieldName.getText());
 user.setUserPassword(textFieldPassword.getText());
}

If you are using JBuilder’s UI designer, double-click the Serialize button
and JBuilder starts the jButton1_actionPerformed() event code for you.
Instantiate a user object, then add the user.setUserName() and
user.setUserPassword() method calls to the event handler.

Next, open a FileOutputStream to the file that will contain the serialized
data. In this example, the file will be called C:\userInfo.ser. Add this code
to the Serialize button event handler:

try {
 FileOutputStream file = new FileOutputStream("c:\userInfo.ser");

Create an ObjectOutputStream that will serialize the object and send it to the
FileOutputStream by adding this code to the event handler:

ObjectOutputStream out = new ObjectOutputStream(file);

Now you’re ready to send the UserInfo object to the file. Do this by calling
the ObjectOutputStream’s writeObject() method. Call the flush() method to
flush the output buffer to ensure that the object is actually written to the
file.

out.writeObject(u);
out.flush();

Close the output stream to free up any resources, such as file descriptors,
used by the stream.

 out.close();
}

Add code to the handler that catches an IOException if there were any
problems writing to the file or if the object does not support the Serializable
interface.

catch (java.io.IOException IOE) {
 labelOutput.setText("IOException");
}

S e r i a l i z a t i o n 8-5

U s i n g i n p u t s t r e a m s

This is how the event handler for the Serialize button should look in its
entirety:

void jButton1_actionPerformed(ActionEvent e) {
 UserInfo user = new UserInfo();
 user.setUserName(textFieldName.getText());
 user.setUserPassword(textFieldPassword.getText());
 try {
 FileOutputStream file = new FileOutputStream("c:\userInfo.ser");
 ObjectOutputStream out = new ObjectOutputStream(file);
 out.writeObject(user);
 out.flush();
 }
 catch (java.io.IOException IOE) {
 labelOutput.setText("IOException");
 }
 finally {
 out.close();
 }
}

Now compile your project and run it. Enter values in the Name and
Password fields and click the Serialize button. You can verify that the
object has been written by opening it in a text editor. (Don’t try to edit it,
or the file will probably be corrupted!) Notice that a serialized object
contains a mixture of ASCII text and binary data:

Figure 8.2 The serialized object

ObjectOutputStream methods

The ObjectOutputStream class contains several useful methods for writing
data to a stream. You aren’t restricted to writing objects. Calling
writeInt(), writeFloat(), writeDouble(), and so on, will write any of the
fundamental types to a stream. If you want to write more than one object
or fundamental type to the same stream, you can do so by repeatedly
calling these methods against the same ObjectOutputStream object. When
you do this, however, you must read the objects back in the same order.

Using input streams
You have now written the object to the disk, but how do you get if back?
Once the user clicks the Deserialize button, you want to read the data back
from the disk into a new object.

8-6 G e t t i n g S t a r t e d w i t h J a v a

U s i n g i n p u t s t r e a m s

You can begin the process by creating a new FileInputStream object to read
from the file you just wrote. If you are using JBuilder, double-click the
Deserialize button in the UI Designer, and in the event handler that
JBuilder creates for you, add the highlighted code:

void jButton2_actionPerformed(ActionEvent e) {
try {
 FileInputStream file = new FileInputStream("c:\userInfo.ser");

Next, create an ObjectInputStream, which gives you the capability to read
objects from that file.

ObjectInputStream input = new ObjectInputStream(file);

After this, call the ObjectInputStream.readObject() method to read the first
object from the file. readObject() returns type Object, so you’ll want to cast
it to the appropriate type (UserInfo).

UserInfo user = (UserInfo)input.readObject();

When you’re done reading, remember to close the ObjectInputStream, so
you free up any resources associated with it, such as file descriptors.

input.close();

Finally, you can use the user object as you would any other object of the
UserInfo class. In this case, you display the name and password in the third
label field you added to the dialog box:

labelOutput.setText("Name is " + user.getUserName() +
 ", password is: " +
 user.getUserPassword());

Reading from a file could cause an IOException, so you should handle this
exception. You might also get a StreamCorruptedException (a subclass of
IOException) if the file has been corrupted in any way:

catch (java.io.IOException IOE) {
 labelOutput.setText("IOException");
}

There’s another exception you must deal with. The readObject() method
can throw a ClassNotFoundException. This exception can occur if you
attempt to read an object for which you have no implementation. For
instance, if this object was written by another program, or you have
renamed the UserInfo class since the file was written, you’ll get a
ClassNotFoundException.

 catch (ClassNotFoundException cnfe) {
 labelOutput.setText("ClassNotFoundException");
 }
}

Here is the Deserialize button event handler in its entirety:

void jButton2_actionPerformed(ActionEvent e) {
 try {
 FileInputStream file = new FileInputStream("c:\userInfo.ser");

S e r i a l i z a t i o n 8-7

W r i t i n g a n d r e a d i n g o b j e c t s t r e a m s

 ObjectInputStream input = new ObjectInputStream(file);
 UserInfo user = (UserInfo)input.readObject();
 input.close();
 labelOutput.setText("Name is " + user.getUserName() +
 ", password is: " +
 user.getUserPassword());
 }
 catch (java.io.IOException IOE) {
 labelOutput.setText("IOException");
 }
 catch (ClassNotFoundException cnfe) {
 labelOutput.setText("ClassNotFoundException");
 }
}

Now when you compile and run your project, enter Name and Password
values and click the Serialize button to store the information on your disk.
Then click the Deserialize button to read the serialized UserInfo object back
again.

Figure 8.3 The object restored

ObjectInputStream methods

ObjectInputStream also has methods such as readDouble(), readFloat(), and
so on, which are the counterparts to the writeDouble(), writeFloat(), and
such methods. You must call each method in sequence, the same way the
objects were written to the stream.

Writing and reading object streams
You might wonder what happens when an object you are serializing
contains a field that refers to another object, rather than a primitive type.
In this case, both the base object and the secondary object will be written
to the stream. You should realize, however, that both objects written to the
stream need to implement the Serializable interface. If they don’t, a

8-8 G e t t i n g S t a r t e d w i t h J a v a

W r i t i n g a n d r e a d i n g o b j e c t s t r e a m s

NotSerializableException will be thrown when the writeObject() method is
called.

Recall that object serialization can create potential security problems. In
the example above, we wrote a password to a serialized object. While this
technique might be acceptable in some circumstances, keep security issues
in mind when you choose to serialize an object.

Finally, if you want to create a persistent object, but don’t want to use the
default serialization mechanism, the Serializable interface documents two
methods, writeObject() and readObject(), which you can implement to
perform custom serialization. The Externalizable interface also provides a
similar mechanism. Consult the JDK documentation for information about
these techniques.

A n i n t r o d u c t i o n t o t h e J a v a V i r t u a l M a c h i n e 9-1

C h a p t e r

9
Chapter9An introduction to the

Java Virtual Machine
This chapter provides an introduction to the Java Virtual Machine (JVM).
While it is important for you to be familiar with basic information
concerning the JVM, unless you get into very advanced Java
programming, the JVM is typically something you don’t need to worry
about. This chapter is for your information only.

Before exploring the Java Virtual Machine, we will explain some of the
terminology used in this chapter. First, the Java Virtual Machine (JVM) is
the environment in which Java programs execute. The Java Virtual
Machine specification essentially defines an abstract computer, and
specifies the instructions that this computer can execute. These
instructions are called bytecodes. Generally speaking, Java bytecodes are to
the JVM what an instruction set is to a CPU. A bytecode is a byte-long
instruction that the Java compiler generates, and the Java interpreter
executes. When the compiler compiles a .java file, it produces a series of
bytecodes and stores them in a .class file. The Java interpreter can then
execute the bytecodes stored in the .class file.

Other terminology used in this chapter involves Java applications and
applets. It is sometimes appropriate to distinguish between a Java
application and a Java applet. In some sections of this chapter, however,
that distinction is inappropriate. In such cases, we will use the word app to
refer to both Java applications and Java applets.

It is important here to clarify what Java really is. Java is more than just a
computer language; it is a computer environment. This is because Java is
composed of two separate main elements, each of which is an essential
part of Java: the design-time Java (the Java language itself) and the

9-2 G e t t i n g S t a r t e d w i t h J a v a

A n i n t r o d u c t i o n t o t h e J a v a V i r t u a l M a c h i n e

runtime Java (the JVM). This interpretation of the word Java is a more
technical one.

Interestingly enough, the practical interpretation of the word Java is that it
stands for the runtime environment — not the language. When you say
something like “this machine can run Java,” what you really mean is that
the machine supports the Java Runtime Environment (JRE); more
precisely, it implements a Java Virtual Machine.

A distinction should be made between the Java Virtual Machine
Specification and an implementation of the Java Virtual Machine. The JVM
specification is a document (available from Sun’s website) which defines
how to implement a JVM. When an implementation of the JVM correctly
follows this specification, it essentially ensures that Java apps can run on
this implementation of the JVM with the same results those same Java
apps produce when running on any other implementation of the JVM. The
JVM specification ensures that Java programs will be able to run on any
platform.

The JVM specification is platform independent, because it can be
implemented on any platform. Note that a specific implementation of the
JVM is platform dependent. This is because the JVM implementation is
the only portion of Java that directly interacts with the operating system
(OS) of your computer. Because each OS is different, any specific JVM
implementation must know how to interact with the specific OS for which
it is intended.

Having Java programs run under an implementation of the JVM
guarantees a predictable runtime environment, because all
implementations of the JVM conform to the JVM specification. Even
though there are different implementations of the JVM, they all must meet
certain requirements to guarantee portability. In other words, whatever
differs among the various implementations does not affect portability.

The JVM is responsible for performing the following functions:

• Allocating memory for created objects

• Performing garbage collection

• Handling register and stack operations

• Calling on the host system for certain functions, such as device access

• Monitoring the security of Java apps

Throughout the remaining chapter, we will focus on the last function:
security.

A n i n t r o d u c t i o n t o t h e J a v a V i r t u a l M a c h i n e 9-3

J a v a V M s e c u r i t y

Java VM security
One of the JVM’s most important roles is monitoring the security of Java
apps. The JVM uses a specific mechanism to force certain security
restrictions on Java apps. This mechanism (or security model) has the
following roles:

• Determines to what extent the code being run is “trusted” and assigns
it the appropriate level of access

• Assures that bytecodes do not perform illegal operations

• Verifies that every bytecode is generated correctly

In the following sections, we will see how these security roles are taken
care of in Java.

The security model

In this section, we will look at some of the different elements in Java’s
security model. In particular, we will examine the roles of the Java
Verifier, the Security Manager and java.security package, and the Class
Loader. These are some of the components that make Java apps secure.

The Java verifier
Every time a class is loaded, it must first go through a verification process.
The main role of this verification process is to ensure that each bytecode in
the class does not violate the specifications of the Java VM. Examples of
bytecode violations are type errors and overflowed or underflowed
arithmetic operations. The verification process is handled by the Java
verifier, and it consists of the following four stages:

1 Verifying the structure of class files.

2 Performing system-level verifications.

3 Validating bytecodes.

4 Performing runtime type and access checks.

The first stage of the verifier is concerned with verifying the structure of
the class file. All class files share a common structure; for example, they
must always begin with what is called the magic number, whose value is
0xCAFEBABE. At this stage, the verifier also checks that the constant pool is
not corrupted (the constant pool is where the class file’s strings and
numbers are stored). In addition, the verifier makes sure that there are no
added bytes at the end of the class file.

The second stage performs system-level verifications. This involves
verifying the validity of all references to the constant pool, and ensuring
that classes are subclassed properly.

9-4 G e t t i n g S t a r t e d w i t h J a v a

J a v a V M s e c u r i t y

The third stage involves validating the bytecodes. This is the most
significant and complex stage in the entire verification process. Validating
a bytecode means checking that its type is valid and that its arguments
have the appropriate number and type. The verifier also checks that
method calls are passed the correct type and number of arguments, and
that each external function returns the proper type.

The final stage is where runtime checks take place. At this stage,
externally referenced classes are loaded, and their methods are checked.
The method check involves checking that the method calls match the
signature of the methods in the external classes. The verifier also monitors
access attempts by the currently loaded class to make sure that the class
does not violate access restrictions. Another access check is done on
variables to ensure that private and protected variables are not accessed
illegally.

From this exhaustive verification process, we can see how important the
Java verifier is to the security model. It is also important to note that the
verification process must be done at the verifier level, and not at the
compiler’s, since any compiler can be programmed to generate Java
bytecodes. Clearly then, relying on the compiler to perform the
verification process is dangerous, since the compiler can be programmed
to bypass it. This point illustrates why the JVM is necessary.

If you need more information on the Java verifier, please see the Java
Virtual Machine Specification.

The Security Manager and the java.security Package
One of the classes defined in the java.lang package is the SecurityManager
class. This class checks the security policy on Java apps to determine if the
running app has permission to perform certain dangerous operations. The
security policy’s main role is to determine access rights. In Java 1.1, the
SecurityManager class was solely responsible for setting the security policy,
but in Java 2 and above, a much more detailed and robust security model
is achieved using the new java.security package. The SecurityManager class
has several methods that begin with “check”. In Java 1.1, the default
implementation of those “check” methods was to throw a
SecurityException. Since Java 2, the default implementation of most of the
“check” methods calls SecurityManager.checkPermission(), and that
method’s default implementation in turn calls
java.security.AccessController.checkPermission(). It is AccessController
which is responsible for the actual algorithm for checking permissions.

The SecurityManager class contains many methods used to check whether a
particular operation is permitted. The checkRead() and checkWrite()
methods, for example, check whether the method caller has the right to
perform a read or write operation, respectively, to a specified file. They do
this by calling checkPermission(), which in turn calls
AccessController.checkPermission(). Many of the methods in the JDK use

A n i n t r o d u c t i o n t o t h e J a v a V i r t u a l M a c h i n e 9-5

J a v a V M s e c u r i t y

the SecurityManager before performing dangerous operations. The JDK
does this for legacy reasons; SecurityManager existed in earlier versions of
the JDK when there was a much more limited security model. In your
apps, you may want to call AccessController.checkPermission() directly,
instead of using the SecurityManager class (which calls the same method
indirectly anyway).

The static System.setSecurityManager() method can be used to load the
default security manager into the environment. Now, whenever a Java
app needs to perform a dangerous operation, it can consult with the
SecurityManager object that is loaded into the environment.

The way Java apps use the SecurityManager class is generally the same. An
instance of SecurityManager is first created, either by using a special
command line argument when the app is started
(“-Djava.security.manager”), or in code similar to the following:

SecurityManager security = System.getSecurityManager();

The System.getSecurityManager() method returns an instance of the
currently loaded SecurityManager. If no SecurityManager has been set using
the System.setSecurityManager() method, System.getSecurityManager()
returns null; otherwise, it returns an instance of the SecurityManager that
was loaded into the environment. Now, let’s assume that the app wants to
check whether it can read a file. It does so as follows:

if (security != null) {
 security.checkRead (fileName);
}

The if statement first checks whether a SecurityManager object exists, then it
makes the call to the checkRead() method. If checkRead() does not permit the
operation, a SecurityException is thrown and the operation never takes
place; otherwise, all goes well.

There is typically a security manager loaded when an applet is running,
because most Java-enabled browsers automatically use one. An
application, on the other hand, does not automatically use a security
manager, unless one is loaded into the environment using the
System.setSecurityManager() method, or from the command line when
starting the application. To use the same security policy for an application
as for an applet, you must make sure the security manager is loaded.

In order to specify your own security policy, you will need to work with
the classes in the java.security package. Important classes in this package
include Policy, Permission, and AccessController. You should not subclass
SecurityManager except as a last resort, and then with extreme caution. An
in-depth discussion of the security package is outside the scope of this
book. The default security policy should suffice for most beginning Java
developers. When you do find you are concerned with more advanced
security topics, or just for more information on the java.security package,

9-6 G e t t i n g S t a r t e d w i t h J a v a

J a v a V M s e c u r i t y

please see the “Security Architecture” document in the JDK
documentation.

The class loader
The class loader works alongside the security manager to monitor the
security of Java apps. The main roles of the class loader are summarized
below:

• Determines whether the class it is attempting to load has already been
loaded

• Loads class files into the Virtual Machine

• Determines the permissions assigned to the loaded class in accordance
with the security policy

• Provides certain information about loaded classes to the security
manager

• Determines the path from which the class should be loaded (System
classes are always loaded from the BOOTCLASSPATH)

Each instance of a class is associated with a class loader object, which is an
instance of a subclass of the abstract class java.lang.ClassLoader. Class
loading happens automatically when a class is instantiated. It is possible
to create a custom class loader by subclassing ClassLoader or one of its
existing subclasses, but in most cases this is not necessary. If you need
more information about the class loader mechanism, see the
documentation for java.lang.ClassLoader and the “Security Architecture”
document in the JDK documentation.

So far, we’ve seen how the Java verifier, the SecurityManager, and the class
loader work to ensure the security of Java apps. In addition to these, there
are other mechanisms not described in this chapter, such as those in the
java.security package, which add to the security of Java apps. There is also
a measure of security built into the Java language itself, but that is outside
the scope of this chapter.

What about Just-In-Time compilers?

It is appropriate to include a brief discussion of Just-In-Time (JIT)
compilers in this chapter. JIT compilers translate Java bytecodes into
native machine instructions to be directly executed by the CPU. This
obviously boosts the performance of Java apps. But if native instructions
are executed instead of bytecodes, what happens to the verification
process mentioned earlier? Actually, the verification process does not
change because the Java verifier still verifies the bytecodes before they are
translated.

W o r k i n g w i t h t h e J a v a N a t i v e I n t e r f a c e (J N I) 10-1

C h a p t e r

10
Chapter10Working with the Java Native

Interface (JNI)
This chapter explains how to invoke native methods in Java applications
using the Java Native Method Interface (JNI). It begins by explaining how
the JNI works, then discusses the native keyword and how any Java
method can become a native method. Finally, it examines the JDK’s javah
tool, which is used to generate C header files for Java classes.

Even though Java code is designed to run on multiple platforms, there are
certain situations where it may not be enough by itself. For example,

• The standard Java class library doesn’t support platform-dependent
features needed by your application.

• You want to access an existing library from another language and make
it accessible to your Java code.

• You have code you want to implement in a lower-level program like
assembly, then have your Java application call it.

The Java Native Interface is a standard cross-platform programming
interface included in the JDK. It enables you to write Java programs that
can operate with applications and libraries written in other programming
languages, such as C, C++, and assembly.

Using JNI, you can write Java native methods to create, inspect, and update
Java objects (including arrays and strings), call Java methods, catch and
throw exceptions, load classes and obtain class information, and perform
runtime type checking.

In addition, you can use the Invocation API to embed the Java Virtual
Machine into your native applications, then use the JNI interface pointer

10-2 G e t t i n g S t a r t e d w i t h J a v a

H o w J N I w o r k s

to access VM features. This allows you to make existing applications Java-
enabled without having to link with the VM source code.

How JNI works
In order to achieve Java’s main goal of platform independence, Sun did
not standardize its implementation of the Java Virtual Machine; in other
words, Sun did not want to rigidly specify the internal architecture of the
JVM, but allowed vendors to have their own implementations of the JVM.
This does not preclude Java from being platform-independent, because
every JVM implementation must still comply with certain standards
needed to achieve platform independence (such as the standard structure
of a .class file).

The only problem with this scenario is that accessing native libraries from
Java apps becomes difficult, since the runtime system differs across the
various JVM implementations. For that reason, Sun came up with the JNI
as a standard way for accessing native libraries from Java applications.

The way native methods are accessed from Java applications changed in
the JDK 1.1. The old way allowed a Java class to directly access methods in
a native library. The new implementation uses the JNI as an intermediate
layer between a Java class and a native library. Instead of having the JVM
make direct calls to native methods, the JVM uses a pointer to the JNI to
make the actual calls. This way, even if the JVM implementations are
different, the layer they use to access the native methods (the JNI) is
always the same.

Using the native keyword
Making Java methods native is very easy. Below is a summary of the
required steps:

1 Delete the body of the method.

2 Add a semicolon at the end of the method’s signature.

3 Add the native keyword at the beginning of the method’s signature.

4 Include the method’s body in a native library to be loaded at runtime.

For example, assume the following method exists in a Java class:

public void nativeMethod () {
 //the method's body
}

This is how the method becomes native:

public native void nativeMethod ();

W o r k i n g w i t h t h e J a v a N a t i v e I n t e r f a c e (J N I) 10-3

U s i n g t h e j a v a h t o o l

Now that you’ve declared the method to be native, its actual
implementation will be included in a native library. It is the duty of the
class, of which this method is a member, to invoke the library so its
implementation becomes globally available. The easiest way to have the
class invoke the library is to add the following to the class:

static
{
 System.loadLibrary (nameOfLibrary);
}

A static code block is always executed once when the class is first loaded.
You can include virtually anything in a static code block. However,
loading libraries is the most common use for it. If, for some reason, the
library fails to load, an UnsatisfiedLineError exception will be thrown once
a method from that library is called. The JVM will add the correct
extension to its name (.dll in Windows, and .so in UNIX) — you don’t
have to specify it in the library name.

Using the javah tool
The JDK supplies a tool called javah, which is used to generate C header
files for Java classes. The following is the general syntax for using javah:

javah [options] className

className represents the name of the class (without the .class extension)
for which you want to generate a C header file. You can specify more than
one class at the command line. For each class, javah adds a .h file to the
class’s directory by default. To put the .h files in a different directory, use
the -o option. If a class is in a package, you must specify the package along
with the class name.

For example, to generate a header file for the class myClass in the package
myPackage, do the following:

javah myPackage.myClass

The generated header file will include the package name,
(myPackage_myClass.h).

Below is a list of some of the javah options:

Option Description

-jni Creates a JNI header file

-verbose Displays progress information

-version Displays the version of javah

-o directoryName Outputs the .h file in specified directory

-classpath path Overrides the default class path

10-4 G e t t i n g S t a r t e d w i t h J a v a

U s i n g t h e j a v a h t o o l

The contents of the .h file generated by javah include all the function
prototypes for the native methods in the class. The prototypes are
modified to allow the Java runtime system to find and invoke the native
methods. This modification basically involves changing the name of the
method according to a naming convention established for native method
invocation. The modified name includes the prefix Java_ to the class and
method names. So, if you have a native method called nativeMethod in a
class called, myClass, the name that appears in the myClass.h file is
Java_myClass_nativeMethod.

For more information on JNI, see the following:

• Java Native Interface at http://java.sun.com/j2se/1.3/docs/guide/jni/

• Java Native Interface Specification at
http://java.sun.com/j2se/1.3/docs/guide/jni/spec/jniTOC.doc.html

• The Java Tutorial, “Trail: Java Native Interface” at
http://java.sun.com/docs/books/tutorial/native1.1/index.html

The following books on Java Native Interface are also available:

“The Java Native Interface: Programmer’s Guide and Specification (Java
Series)” by Sheng Liang
amazon.com
fatbrain.com

“Essential Jni: Java Native Interface (Essential Java)”, by Rob Gordon
amazon.com
fatbrain.com

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-1

C h a p t e r

11
Chapter11Java language quick reference

Java 2 platform editions
The Java 2 Platform is available in several editions used for various
purposes. Because Java is a language that can run anywhere and on any
platform, it is used in a variety of environments and has been packaged in
several editions: Java 2 Standard Edition (J2SE), Java 2 Enterprise Edition
(J2EE), and Java 2 Micro Edition (J2ME). In some cases, as in the
development of enterprise applications, a larger set of packages is used. In
other cases, as in consumer electronic products, only a small portion of the
language is used. Each edition contains a Java 2 Software Development
Kit (SDK) used to develop applications and a Java 2 Runtime
Environment (JRE) used to run applications.

Java class libraries
Java, like most programming languages, relies heavily on pre-built
libraries to support certain functionality. In the Java language, these
groups of related classes called packages vary by Java edition. Each

Table 11.1 Java 2 Platform editions

Java 2 Platform Abbreviation Description

Standard Edition J2SE Contains classes that are the core of the
Java language.

Enterprise Edition J2EE Contains J2SE classes and additional
classes for developing enterprise
applications.

Micro Edition J2ME Contains a subset of J2SE classes and is
used in consumer electronic products.

11-2 G e t t i n g S t a r t e d w i t h J a v a

J a v a k e y w o r d s

edition is used for specific purposes, such as applications, enterprise
applications, and consumer products.

The Java 2 Platform, Standard Edition (J2SE) provides developers with a
feature-rich, stable, secure, cross-platform development environment.
This Java edition supports such core features as database connectivity,
user interface design, input/output, and network programming and
includes the fundamental packages of the Java language. Some of these
J2SE packages are listed in the following table.

Java keywords
These tables cover the following types of keywords:

• Data and return types and terms

• Packages, classes, members, and interfaces

• Access modifiers

• Loops and flow controls

Table 11.2 J2SE packages

Package Package Name Description

Language java.lang Classes that contain the main core of the Java
language.

Utilities java.util Support for utility data structures.

I/O java.io Support for various types of input/output.

Text java.text Localization support for handling text, dates,
numbers, and messages.

Math java.math Classes for performing arbitrary-precision
integer and floating-point arithmetic.

AWT java.awt User interface design and event-handling.

Swing javax.swing Classes for creating all-Java, lightweight
components that behave similarly on all
platforms.

Javax javax Extensions to the Java language.

Applet java.applet Classes for creating applets.

Beans java.beans Classes for developing JavaBeans.

Reflection java.lang.reflect Classes used to obtain runtime class
information.

SQL java.sql Support for accessing and processing data in
databases.

RMI java.rmi Support for distributed programming.

Networking java.net Classes that support development of
networking applications.

Security java.security Support for cryptographic security.

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-3

J a v a k e y w o r d s

• Exception handling

• Reserved

Data and return types and terms

Packages, classes, members, and interfaces

Keyword Use Keyword Use

boolean Boolean values. char 16 bits, one character.

byte one byte, integer. float 4 bytes, single-precision.

short 2 bytes, integer. double 8 bytes, double-precision.

long 8 bytes, integer. int 4 bytes, integer.

strictfp (proposed)
Method or class to use
standard precision in
floating-point
intermediate
calculations.

void Return type where no
return value is required.

return Exit the current code block
with any resulting values.

Keyword Use Keyword Use

package Declares a package name
for all classes defined in
source files with the
same package
declaration.

import Makes all classes in the
imported class or package
visible to the current
program.

class Declares a Java class. new Instantiates a class.

super Inside a subclass, refers
to the superclass.

instanceof Checks an object’s
inheritance.

final This class can’t be
extended.

abstract This method or class must
be extended to be used.

extends Creates a subclass.
Gives a class access to
public and protected
members of another
class.
Allows one interface to
inherit another.

implements In a class definition,
implements a defined
interface.

interface Abstracts a class’s
interface from its
implementation (tells
what to do, not how to
do it).

synchronized Makes a code block thread-
safe.

11-4 G e t t i n g S t a r t e d w i t h J a v a

J a v a k e y w o r d s

Access modifiers

Loops and flow controls

native The body of this method
is provided by a link to a
native library.

this Refers to the current object.

static Member is available to
the whole class, not just
one object.

transient This variable’s value won’t
persist when the object is
stored.

volatile This variable’s value can
change unexpectedly.

Keyword Use Keyword Use

public Class: accessible from
anywhere.
Subclass: accessible as
long as its class is
accessible.

protected Access limited to member’s
class’s package.

private Access limited to
member’s own class.

package Default access level; don’t
use it explicitly.
Cannot be subclassed by
another package.

Keyword Use Keyword Use

if Selection statement. else Selection statement.

switch Selection statement. case Selection statement.

break Breakout statement. default Fallback statement.

for Iteration statement. do Iteration statement.

while Iteration statement. continue Iteration statement.

assert Checks a condition before allowing a statement to be executed.

Keyword Use Keyword Use

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-5

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

Exception handling

Reserved

Converting and casting data types
An object or variable’s data type can be altered for a single operation
when a different type is required. Widening conversions (from a smaller
class or data type to a larger) can be implicit, but it’s good practice to
convert explicitly. Narrowing conversions must be explicitly converted, or
cast. Novice programmers should avoid casts; they can be a rich source of
errors and confusion.

For narrowing casts, put the type you want to cast to in parentheses
immediately before the variable you want to cast:(int)x. This is what it
looks like in context, where x is the variable being cast, float is the original
data type, int is the target data type, and y is the variable storing the new
value:

float x = 1.00; //declaring x as a float
int y = (int)x; //casting x to an int named y

This assumes that the value of x would fit inside of int. Note that x’s
decimal values are lost in the conversion. Java rounds decimals down to
the nearest whole number.

Note that Unicode sequences can represent numbers, letters, symbols, or
nonprinting characters such as line breaks or tabs. For more information
on Unicode, see http://www.unicode.org/

Keyword Use Keyword Use

throws Lists the exceptions a
method could throw.

throw Transfers control of the
method to the exception
handler.

try Opening exception-
handling statement.

catch Captures the exception.

finally Runs its code before
terminating the program.

Keyword Use Keyword Use

goto Reserved for future use. const Reserved for future use.

11-6 G e t t i n g S t a r t e d w i t h J a v a

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

This section contains tables of the following conversions:

• Primitive to primitive

• Primitive to String

• Primitive to reference

• String to primitive

• Reference to primitive

• Reference to reference

Primitive to primitive

Java doesn’t support casting to or from boolean values. In order to work
around Java’s strict logical typing, you must assign an appropriate
equivalent value to the variable and then convert that. 0 and 1 are often
used to represent false and true values.

Syntax Comments

From other primitive type p
To boolean t:

t = p != 0;

Other primitive types include byte,
short, char, int, long, double, float.

From boolean t
To byte b:

b = (byte)(t ? 1 : 0);

From boolean t
To int, long, double, or float m:

m = t ? 1 : 0;

From boolean t
To short s:

s = (short) (t ? 1 : 0);

From boolean t
To byte b:

b = (byte) (t?1:0);

From boolean t
To char c:

c = (char) (t?'1':'0');

You can omit the single quotes, but
they are recommended.

From short, char, int, long, double, or float n
To byte b:

b = (byte)n;

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-7

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

Primitive to String

Primitive data types are mutable; reference types are immutable objects.
Casting to or from a reference type is risky.

Java doesn’t support casting to or from boolean values. In order to work
around Java’s strict logical typing, you must assign an appropriate
equivalent value to the variable and then convert that. 0 and 1 are often
used to represent false and true values.

From byte b
To short, int, long, double, or float n:

n = b;

From byte b
To char c:

c = (char)b;

Syntax Comments

From boolean t
To String gg:

gg = t ? "true" : "false";

From byte b
To String gg:

gg = Integer.toString(b);
or

gg = String.valueOf(b);

The following may be substituted for
toString, where appropriate:

toBinaryString
toOctalString
toHexString

Where you are using a base other than 10 or
2 (such as 8):

gg = Integer.toString(b, 7);

From short or int n
To String gg:

gg = Integer.toString(n);
or

gg = String.valueOf(n);

The following may be substituted for
toString, where appropriate:

toBinaryString
toOctalString
toHexString

Where you are using a base other than 10
(such as 8):

gg = Integer.toString(n, 7);

From char c
To String gg:

gg = String.valueOf(c);

Syntax Comments

11-8 G e t t i n g S t a r t e d w i t h J a v a

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

Primitive to reference

Java provides classes that correspond to primitive data types and provide
methods that facilitate conversions.

Note that primitive data types are mutable; reference types are immutable
objects. Casting to or from a reference type is risky.

Java doesn’t support casting to or from boolean values. In order to work
around Java’s strict logical typing, you must assign an appropriate

From long n
To String gg:

gg = Long.toString(n);
or

gg = String.valueOf(n);

The following may be substituted for
toString, where appropriate:

toBinaryString
toOctalString
toHexString

Where you are using a base other than 10 or
2 (such as 8):

gg = Integer.toString(n, 7);

From float f
To String gg:

gg = Float.toString(f);
or

gg = String.valueOf(f);

For decimal protection or scientific
notation, see next column.

These casts protect more data.
Double precision:

java.text.DecimalFormat df2
 = new
java.text.DecimalFormat("###,##0.00");
gg = df2.format(f);

Scientific notation (protects exponents) (JDK
1.2.x and up):

java.text.DecimalFormat de
 = new
java.text.DecimalFormat("0.000000E00");
gg = de.format(f);

From double d
To String gg:

gg = Double.toString(d);
or

gg = String.valueOf(d);

For decimal protection or scientific
notation, see next column.

These casts protect more data.
Double precision:

java.text.DecimalFormat df2
 = new
java.text.DecimalFormat("###,##0.00");
gg = df2.format(d);

Scientific notation (JDK 1.2.x and up):

java.text.DecimalFormat de
 = new
java.text.DecimalFormat("0.000000E00");
gg = de.format(d);

Syntax Comments

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-9

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

equivalent value to the variable and then convert that. 0 and 1 are often
used to represent false and true values.

Syntax Comments

From boolean t
To Boolean tt:

tt = new Boolean(t);

From Primitive type p (other than
boolean)
To Boolean tt

tt = new Boolean(p != 0);

For char, see next column.

For char c, put single quotes around the
zero:

tt = new Boolean(c != '0');

From boolean t
To Character cc:

cc = new Character(t ? '1' : '0');

From byte b
To Character cc:

cc = new Character((char) b);

From char c
To Character cc:

cc = new Character(c);

From short, int, long, float, or double n
To Character cc:

cc = new Character((char)n);

From boolean t
To Integer ii:

ii = new Integer(t ? 1 : 0);

From byte b
To Integer ii:

ii = new Integer(b);

Fromshort, char, or int n
To Integer ii:

ii = new Integer(n);

From long, float, or double f
To Integer ii:

ii = new Integer((int) f);

From boolean t
To Long nn:

nn = new Long(t ? 1 : 0);

From byte b
To Long nn:

nn = new Long(b);

11-10 G e t t i n g S t a r t e d w i t h J a v a

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

String to primitive

Note that primitive data types are mutable; reference types are immutable
objects. Casting to or from a reference type is risky.

Java doesn’t support casting to or from boolean values. In order to work
around Java’s strict logical typing, you must assign an appropriate
equivalent value to the variable and then convert that. The numbers

From short, char, int, or long s
To Long nn:

nn = new Long(s);

From float, double f
To Long nn:

nn = new Long((long)f);

From boolean t
To Float ff:

ff = new Float(t ? 1 : 0);

From byte b
To Float ff:

ff = new Float(b);

From short, char, int, long, float, or
double n
To Float ff:

ff = new Float(n);

From boolean t
To Double dd:

dd = new Double(t ? 1 : 0);

From byte b
To Double dd:

dd = new Double(b);

From short, char, int, long, float, or
double n
To Double dd:

dd = new Double(n);

Syntax Comments

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-11

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

0 and 1, the strings “true” and “false”, or equally intuitive values are used
here to represent true and false values.

Syntax Comments

From String gg
To boolean t:

t = new
Boolean(gg.trim()).booleanValue();

Caution: t will only be true when the
value of gg is “true” (case insensitive); if
the string is “1”, “yes”, or any other
affirmative, this conversion will return a
false value.

From String gg
To byte b:

try {
 b =
(byte)Integer.parseInt(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
For bases other than 10, such as 8:

try {
 b =
(byte)Integer.parseInt(gg.trim(),
7);
}
catch (NumberFormatException e) {
 ...
}

From String gg
To short s:

try {
 s =
(short)Integer.parseInt(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
For bases other than 10, such as 8:

try {
 s =
(short)Integer.parseInt(gg.trim(),
7);
}
catch (NumberFormatException e) {
 ...
}

From String gg
To char c:

try {
 c =
(char)Integer.parseInt(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
For bases other than 10, such as 8:

try {
 c =
(char)Integer.parseInt(gg.trim(),
7);
}
catch (NumberFormatException e) {
 ...
}

11-12 G e t t i n g S t a r t e d w i t h J a v a

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

Reference to primitive

Java provides classes that correspond to the primitive data types. This
table shows how to convert a variable from one of these classes to a
primitive data type for a single operation.

From String gg
To int i

try {
 i = Integer.parseInt(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
For bases other than 10, such as 8:

try {
 i = Integer.parseInt(gg.trim(),
7);
}
catch (NumberFormatException e) {
 ...
}

From String gg
To long n:

try {
 n = Long.parseLong(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.

From String gg
To float f:

try {
 f =
Float.valueOf(gg.trim()).floatValue;
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
For JDK 1.2.x or better:

try {
 f = Float.parseFloat(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

From String gg
To double d:

try {
 d =
Double.valueOf(gg.trim()).doubleValu
e;
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
For JDK 1.2.x or better:

try {
 d = Double.parseDouble(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Syntax Comments

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-13

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

To convert from a reference type to a primitive, you must first get the
value of the reference as a primitive, then cast the primitive.

Primitive data types are mutable; reference types are immutable objects.
Converting to or from a reference type is risky.

Java doesn’t support casting to or from boolean values. In order to work
around Java’s strict logical typing, you must assign an appropriate
equivalent value to the variable and then convert that. 0 and 1 are often
used to represent false and true values.

Syntax Comments

From Boolean tt
To boolean t:

t = tt.booleanValue();

From Boolean tt
To byte b:

b = (byte)(tt.booleanValue() ? 1 : 0);

From Boolean tt
To short s:

s = (short)(tt.booleanValue() ? 1 : 0);

From Boolean tt
To char c:

c = (char)(tt.booleanValue() ? '1' : '0');

You may omit the single
quotes, but they are
recommended.

From Boolean tt
To int, long, float, or double n:

n = tt.booleanValue() ? 1 : 0);

From Character cc
To boolean t:

t = cc.charValue() != 0;

From Character cc
To byte b:

b = (byte)cc.charValue();

From Character cc
To short s:

s = (short)cc.charValue();

From Character cc
To char, int, long, float, or double n:

n = cc.charValue();

From Integer ii
To boolean t:

t = ii.intValue() != 0;

From Integer ii
To byte b:

b = ii.byteValue();

11-14 G e t t i n g S t a r t e d w i t h J a v a

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

Reference to reference

Java provides classes that correspond to the primitive data types. This
table shows how to convert a variable from one of these classes to another
for a single operation.

Note For legal class to class conversions apart from what’s shown here,
widening conversions are implicit. Narrowing casts use this syntax:

castFromObjectName = (CastToObjectClass)castToObjectName;

You must cast between classes that are in the same inheritance hierarchy.
If you cast an object to an incompatible class, it will throw a
ClassCastException.

From Integer, Long, Float, or Double nn
To short s:

s = nn.shortValue();

From Integer, Long, Float, or Double nn
To char c:

c = (char)nn.intValue();

From Integer, Long, Float, or Double nn
To int i:

i = nn.intValue();

From Integer ii
To long n:

n = ii.longValue();

From Long, Float, or Double dd
To long n:

n = dd.longValue();

From Integer, Long, Float, or Double nn
To float f:

f = nn.floatValue();

From Integer, Long, Float, or Double nn
To double d:

d = nn.doubleValue();

Syntax Comments

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-15

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

Reference types are immutable objects. Converting between reference
types is risky.

Syntax Comments

From String gg
To Boolean tt:

tt = new Boolean(gg.trim());

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
Alternative:

tt = Boolean.valueOf(gg.trim());

From String gg
To Character cc:

cc = new
Character(gg.charAt(<index>);

From String gg
To Integer ii:

try {
 ii = new Integer(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
Alternative:

try {
 ii = Integer.valueOf(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

From String gg
To Long nn:

try {
 nn = new Long(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
Alternative:

try {
 nn = Long.valueOf(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

From String gg
To Float ff:

try {
 ff = new Float(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
Alternative:

try {
 ff = Float.valueOf(gg.trim());
}
catch
 ...
}

11-16 G e t t i n g S t a r t e d w i t h J a v a

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

From String gg
To Double dd:

try {
 dd = new Double(gg.trim());
}
catch
 ...
}

Note: If the value of gg is null, trim() will
throw a NullPointerException. If you don’t
use trim(), make sure there’s no trailing
white space.
Alternative:

try {
 dd = Double.valueOf(gg.trim());
}
catch (NumberFormatException e) {
 ...
}

From Boolean tt
To Character cc:

cc = new
 Character(tt.booleanValue()
?'1':'0');

From Boolean tt
To Integer ii:

ii = new Integer(tt.booleanValue() ?
1 : 0);

From Boolean tt
To Long nn:

nn = new Long(tt.booleanValue() ? 1
: 0);

From Boolean tt
To Float ff:

ff = new Float(tt.booleanValue() ? 1
: 0);

From Boolean tt
To Double dd:

dd = new Double(tt.booleanValue() ?
1 : 0);

From Character cc
To Boolean tt:

tt = new Boolean(cc.charValue() !=
'0');

From Character cc
To Integer ii:

ii = new Integer(cc.charValue());

From Character cc
To Long nn:

nn = new Long(cc.charValue());

From any class rr
To String gg:

gg = rr.toString();

Syntax Comments

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-17

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

From Float ff
To String gg:

gg = ff.toString();

These variations protect more data.
Double precision:

java.text.DecimalFormat df2
 = new
java.text.DecimalFormat("###,##0.00"
);
gg = df2.format(ff.floatValue());

Scientific notation (JDK 1.2.x on up):

java.text.DecimalFormat de
 = new

java.text.DecimalFormat("0.000000E00
");
gg = de.format(ff.floatValue());

From Double dd
To String gg:

gg = dd.toString();

These variations protect more data.
Double precision:

java.text.DecimalFormat df2
 = new
java.text.DecimalFormat("###,##0.00"
);
gg = df2.format(dd.doubleValue());

Scientific notation (JDK 1.2.x on up):

java.text.DecimalFormat de
 = new

java.text.DecimalFormat("0.000000000
0E00");
gg = de.format(dd.doubleValue());

From Integer ii
To Boolean tt:

tt = new Boolean(ii.intValue() !=
0);

From Integer ii
To Character cc:

cc = new
Character((char)ii.intValue());

From Integer ii
To Long nn:

nn = new Long(ii.intValue());

From Integer ii
To Float ff:

ff = new Float(ii.intValue());

From Integer ii
To Double dd:

dd = new Double(ii.intValue());

Syntax Comments

11-18 G e t t i n g S t a r t e d w i t h J a v a

C o n v e r t i n g a n d c a s t i n g d a t a t y p e s

From Long nn
To Boolean tt:

tt = new Boolean(nn.longValue() !=
0);

From Long nn
To Character cc:

cc = new
Character((char)nn.intValue());

Note: Some Unicode values may be
rendered as nonprintable characters.
Consult http://www.unicode.org/

From Long nn
To Integer ii:

ii = new Integer(nn.intValue());

From Long nn
To Float ff:

ff = new Float(nn.longValue());

From Long nn
To Double dd:

dd = new Double(nn.longValue());

From Float ff
To Boolean tt:

tt = new Boolean(ff.floatValue() !=
0);

From Float ff
To Character cc:

cc = new
Character((char)ff.intValue());

Note: Some Unicode values may be
rendered as nonprintable characters.
Consult http://www.unicode.org/

From Float ff
To Integer ii:

ii = new Integer(ff.intValue());

From Float ff
To Long nn:

nn = new Long(ff.longValue());

From Float ff
To Double dd:

dd = new Double(ff.floatValue());

From Double dd
To Boolean tt:

tt = new Boolean(dd.doubleValue() !=
0);

From Double dd
To Character cc:

cc = new
Character((char)dd.intValue());

Note: Some Unicode values may be
rendered as nonprintable characters.
Consult http://www.unicode.org/

Syntax Comments

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-19

E s c a p e s e q u e n c e s

Escape sequences
An octal character is represented by a sequence of three octal digits, and a
Unicode character is represented by a sequence of four hexadecimal
digits. Octal characters are preceded by the standard escape mark, \, and
Unicode characters are preceded by \u. For example, the decimal number
57 is represented by the octal code \071 and the Unicode sequence \u0039.
Unicode sequences can represent numbers, letters, symbols, or
nonprinting characters such as line breaks or tabs. For more information
on Unicode, see http://www.unicode.org/

From Double dd
To Integer ii:

ii = new Integer(dd.intValue());

From Double dd
To Long nn:

nn = new Long(dd.longValue());

From Double dd
To Float ff:

ff = new Float(dd.floatValue());

Syntax Comments

Character Escape Sequence

Backslash \\

Backspace \b

Carriage return \r

Double quote \"

Form feed \f

Horizontal tab \t

New line \n

Octal character \DDD

Single quote \'

Unicode character \uHHHH

11-20 G e t t i n g S t a r t e d w i t h J a v a

O p e r a t o r s

Operators
This section lists the following:

• Basic operators

• Arithmetic operators

• Logical operators

• Assignment operators

• Comparison operators

• Bitwise operators

• Ternary operator

Basic operators

Operator Operand Behavior

. object member Accesses a member of the object.

(<type>) data type Casts a variable to a different data type.1

1. It’s important to distinguish between an operator and a delimiter. Parentheses are used
around args (for instance) as delimiters that mark the args in the statement. They are used
around a data type as operators that change a variable’s data type to the one inside the
parentheses.

+ String Joins up strings (concatenator).

number Adds.

- number This is the unary2 minus (reverses number sign).

2. A unary operator affects a single operand, a binary operator affects two operands, and a
ternary operator affects three operands.

number Subtracts.

! boolean This is the boolean NOT operator.

& integer, boolean This is both the bitwise (integer) and boolean
AND operator. When doubled (&&), it is the
boolean conditional AND.

= most elements
with variables

Assigns an element to another element (for
instance, a value to a variable, or a class to an
instance). This can be combined with other
operators to perform the other operation and
assign the resulting value. For instance, += adds
the left-hand value to the right, then assigns the
new value to the right-hand side of the
expression.

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-21

O p e r a t o r s

Arithmetic operators

Logical operators

Operator Preced. Assoc. Definition

++/-- 1 Right Auto-increment/decrement: Adds one
to, or subtracts one from, its single
operand. If the value of i is 4, ++i is 5. A
pre-increment (++i) increments the value
by one and assigns the new value to the
variable. A post-increment (i++)
increments the value but leaves the
variable with the original value.

+/- 2 Right Unary plus/minus: sets or changes the
positive/negative value of a single
number.

* 4 Left Multiplication.

/ 4 Left Division.

% 4 Left Modulus: Divides the first operand by
the second operand and returns the
remainder (not the result).

+/- 5 Left Addition/subtraction

Operator Preced. Assoc. Definition

! 2 Right Boolean NOT (unary)
Changes true to false or false to true.
Because of its low precedence, you may
need to use parentheses around this
statement.

& 9 Left Evaluation AND (binary)
Yields true only if both operands are
true. Always evaluates both operands.

^ 10 Left Evaluation XOR (binary)
Yields true if only one operand is true.
Evaluates both operands.

| 11 Left Evaluation OR (binary)
Yields true if one or both of the
operands is true. Evaluates both
operands.

11-22 G e t t i n g S t a r t e d w i t h J a v a

O p e r a t o r s

Assignment operators

Comparison operators

&& 12 Left Conditional AND (binary)
Yields true only if both operands are
true. Called “conditional” because it
only evaluates the second operand if
the first operand is true.

|| 13 Left Conditional OR (binary)
Yields true if either one or both
operands is true; returns false if both
are false. Doesn’t evaluate second
operand if first operand is true.

Operator Preced. Assoc. Definition

= 15 Right Assign the value on the right to the
variable on the left.

+= 15 Right Add the value on the right to the value
of the variable on the left; assign the
new value to the original variable.

-= 15 Right Subtract the value on the right from the
value of the variable on the left; assign
the new value to the original variable.

*= 15 Right Multiply the value on the right with the
value of the variable on the left; assign
the new value to the original variable.

/= 15 Right Divide the value on the right from the
value of the variable on the left; assign
the new value to the original variable.

Operator Preced. Assoc. Definition

< 7 Left Less than

> 7 Left Greater than

<= 7 Left Less than or equal to

>= 7 Left Greater than or equal to

== 8 Left Equal to

!= 8 Left Not equal to

Operator Preced. Assoc. Definition

J a v a l a n g u a g e q u i c k r e f e r e n c e 11-23

O p e r a t o r s

Bitwise operators

Note A signed integer is one whose left-most bit is used to indicate the integer’s
positive or negative sign: the bit is 1 if the integer is negative, 0 if positive.
In Java, integers are always signed, whereas in C/C++ they are signed
only by default. In Java, the shift operators preserve the sign bit, so that
the sign bit is duplicated, then shifted. For example, right shifting
10010011 by 1 is 11001001.

Ternary operator

The ternary operator ?: performs a very simple if-then-else operation
inside of a single statement. If the first term is true, it evaluates the second;
if the second term is false, it uses the third. This is the syntax:

<expression 1> ? <expression 2> : <expression 3>;

For example:

int x = 3, y = 4, max;
max = (x > y) ? x : y;

This operation assigns to max the value of whichever is greater, x or y.

Operator Preced. Assoc. Definition

~ 2 Right Bitwise NOT
Inverts each bit of the operand, so each 0
becomes 1 and vice versa.

<< 6 Left Signed left shift
Shifts the bits of the left operand to the left, by
the number of digits specified in the right
operand, with 0’s shifted in from the right.
High-order bits are lost.

>> 6 Left Signed right shift
Shifts the bits of the left operand to the right,
by the number of digits specified in the right
operand. If the left operand is negative, 0’s are
shifted in from the left; if it is positive, 1’s are
shifted in. This preserves the original sign.

>>> 6 Left Zero-fill right shift
Shifts right, but always fills in with 0’s.

& 9 Left Bitwise AND
Can be used with = to assign the value.

| 10 Left Bitwise OR
Can be used with = to assign the value.

^ 11 Left Bitwise XOR
Can be used with = to assign the value.

<<= 15 Left Left-shift with assignment

>>= 15 Left Right-shift with assignment

>>>= 15 Left Zero-fill right shift with assignment

11-24 G e t t i n g S t a r t e d w i t h J a v a

L e a r n i n g m o r e a b o u t J a v a 12-1

C h a p t e r

12
Chapter12Learning more about Java

Resources on the Java language abound. The http://java.sun.com web site
of Sun Microsystems is a good place to search for more information; you’ll
find many interesting links. If you’re new to Java, you’ll especially want to
see Sun’s online Java tutorial at http://java.sun.com/docs/books/tutorial/.

Online glossaries
To quickly find definitions of Java terms, see one of Sun’s online
glossaries:

• Sun Microsystem’s Java Glossary in HTML:
http://java.sun.com/docs/glossary.nonjava.html#top

• Sun Microsystem’s Java Glossary in Java:
http://java.sun.com/docs/glossary.html

12-2 G e t t i n g S t a r t e d w i t h J a v a

B o o k s

Books
There are many excellent books about programming with Java. To see a
list of Java titles on the Borland Developer Network, go to
http://bdn.borland.com/books/java/0,1427,c|3,00.html.

Sun also publishes their Java Series of books. See the list of titles at
http://java.sun.com/docs/books/. You’ll find books for all levels of Java
programming.

Besides browsing through Java books at your favorite book store, you
might also simply type Java books into your favorite web search engine to
find lists of recommended books that Java programmer’s like or that
various publishers are offering.

I n d e x I-1

Symbols
. (dot) operator 6-2
?: ternary operator 3-3

A
abstract classes 6-16
abstract keyword 11-3
access modifiers 4-5, 6-11

default 6-12
not specified 6-12
outside of a package 6-12
table of 11-4
within a package 6-12

AccessController class 9-4
accessing members 3-15
accessor methods 6-12
applet package 5-7
applications

example for developing 6-4
arithmetic operators

defined 3-2
table of 3-8, 11-21
using 3-7

arrays
accessing 3-15
defined 2-4
indexing 3-15
representing strings 5-19
using 3-13

assert keyword 11-4
assignment operators

defined 3-2
table of 3-10, 11-22

AWT package 5-6

B
basic data types 2-2
basic operators

table of 11-20
beans package 5-8
bits

shifting, signed and unsigned 3-11
bitwise operators 3-11

defined 3-3
table of 3-12, 11-23

bitwise shifts 3-11
boolean keyword 11-3
boolean operators

defined 3-2
table of 3-9

break keyword 11-4
break statements 4-11
BufferedOutputStream class 5-25
byte keyword 11-3
bytecodes 9-1

translating into native instructions 9-6
violations 9-3

C
C header files 10-3
calling methods 6-3
case keyword 11-4
casting 4-2

See also type conversions
catch keyword 11-5
char keyword 11-3
character arrays 5-19
character literals 4-4

See also escape sequences
checkPermission() 9-4
checkRead() 9-5
checkWrite() 9-5
child classes 6-8
class definitions 6-2

grouping 6-24
class files

compilation 9-1
structure of 9-3

class inheritance 6-8
class keyword 11-3
class libraries 5-1
class loader 9-6
classes

accessing members 6-11
defined 6-2
implementing interfaces 6-17
objects vs. 6-2
type wrapper 5-13

ClassLoader class 9-6
ClassNotFoundException exception 8-6
code

comments 3-3
reusing 6-24

code blocks
defined 3-5
static 10-3

comments 3-3
comparison operators

Index

I-2 G e t t i n g S t a r t e d w i t h J a v a

defined 3-3
table of 3-11, 11-22

compilers
just-in-time (JIT) 9-6

composite data types 2-3
arrays 2-4
Strings 2-3

conditional statements 4-12
if-else 4-12
switch 4-12

constructors 6-3
calling parent 6-11
multiple 6-11
superclasses 6-11
syntax 3-14
using 3-14

continue keyword 11-4
continue statements 4-11
control characters 4-4

See also escape sequences
control statements 4-11
conversions

primitive to primitive 11-6
primitive to String 11-7
primitives to reference types 11-8
reference to primitive 11-12
reference to reference 11-14
String to primitive 11-10
tables of 11-5

creating a thread 7-5
creating an object 3-14

D
daemon threads 7-1
data and return types

table of 11-3
data members 6-2

accessing 6-11
data types

arrays 2-4
composite 2-3
converting and casting 4-2
defined 2-2
numeric, table of 2-3
primitive 2-2, 5-13
reading 8-7
Strings 2-3
writing to streams 8-5

DataOutputStream class 5-26
declaring a variable 2-5
declaring classes 6-2
declaring packages 6-24
default keyword 6-11, 11-4

defining classes 6-2
deserialization

defined 8-1
example 8-5

deserializing objects 8-1
developing applications 6-4
do keyword 11-4
do loops

using 4-10
dot operator 6-2
double keyword 11-3

E
else keyword 11-4
Enterprise Edition (J2EE) 5-2
Enumeration interface 5-18
escape sequences 4-4

table of 11-19
exception handling 4-13

defined 4-3
keywords, table of 11-5

exceptions
catch blocks 4-14
finally blocks 4-15
statements 4-14
throw keyword 4-15
throws keyword 4-15
try blocks 4-14

extends keyword 6-8, 11-3
external packages

importing 6-24
Externalizable interface 8-7

F
File class 5-27
file classes 5-27

RandomAccessFile class 5-28
file input/output 5-27
FileInputStream class 5-22, 8-5
FileOutputStream class 5-26, 8-4
final keyword 11-3
finalizers 6-3
finally keyword 11-5
float keyword 11-3
flow control

defined 4-3
using 4-9

flush() 8-4
for keyword 11-4
for loops

using 4-10
freeing stream resources 8-5
functions 2-5

I n d e x I-3

See also methods

G
garbage collection 6-2, 6-3

role of JVM 9-2
getter methods 6-12
grouping threads 7-8

H
handling exceptions 4-13

See also exceptions
header files 10-3

I
identifiers

defined 2-1
if keyword 11-4
if-else statements

using 4-12
implements keyword 6-17, 11-3
implicit type casting

defined 4-8
import keyword 11-3
import statements 6-24
inheritance 6-8

multiple 6-10
single 6-10

input stream classes 5-21
FileInputStream 5-22
InputStream 5-22

input streams 8-5
input/output (io) package 5-5
InputStream class 5-22
instance of keyword 11-3
instance variables 6-2
instantiating

abstract classes 6-16
classes 6-2
defined 3-14, 6-2

int keyword 11-3
interface keyword 6-17, 11-3
Interface wizard 6-17
interfaces

defined 6-17
Java Native Interface
replacing multiple inheritance 6-17

J
J2EE (Java 2 Enterprise Edition) 5-2
J2ME (Java 2 Micro Edition) 5-2
J2SE (Java 2 Standard Edition) 5-2, 11-1

Java
defined 9-2
object-oriented language 6-1

Java 2 Enterprise Edition 5-2
Java 2 Micro Edition 5-2
Java 2 Standard Edition 5-2, 5-3, 11-1
Java bytecodes 9-1
Java class libraries 5-1
Java class loader 9-6
Java editions 5-1, 11-1

table of 5-1, 11-1
Java language

glossaries 12-1
resources 12-1

Java Native Interface 10-1, 10-2
See also JNI

Java Runtime Environment 9-2
See also JRE

Java security package 9-4
Java verifier 9-3
Java Virtual Machine 9-1

See also JVM
java.applet package 5-7
java.awt package 5-6
java.beans package 5-8
java.io package 5-5
java.lang package 5-4
java.lang.reflect package 5-9
java.math package 5-6
java.net package 5-11
java.rmi package 5-10
java.security package 5-11
java.sql package 5-10
java.text package 5-5
java.util package 5-5
javah 10-3

options 10-3
javax packages 5-7
javax.swing package 5-6
JIT compilers (just-in-time) 9-6
JNI (Java Native Interface)
JRE (Java Runtime Environment)

relation to JVM 9-2
just-in-time compilers (JIT) 9-6
JVM (Java Virtual Machine)

advantages 9-2
and JNI 10-2
class loader 9-6
definition 9-1
instructions 9-1
introduction 9-1
main roles 9-2
memory management 9-2
portability 9-2

I-4 G e t t i n g S t a r t e d w i t h J a v a

relation to JRE 9-2
security 9-2
specification vs. implementation 9-2
verifier 9-3

K
keywords

access modifiers 4-5, 11-4
data and return types 11-3
defined 3-1
exception handling 11-5
loops 11-4
packages, classes, members, interfaces 11-3
reserved 11-5
tables of 11-2

L
language package 5-4

Math class 5-14
Object class 5-12
String class 5-14
StringBuffer class 5-16
System class 5-17
type wrapper classes 5-13

libraries
accessing native 10-2
Java class 5-1
static code blocks 10-3

literals
defined 2-4

logical operators
defined 3-2
table of 3-9, 11-21

long keyword 11-3
loop controls

break statements 4-11
continue statements 4-11

loop statements
defined 4-3

loops
conditional statements 4-12
controlling execution 4-11
keywords, table of 11-4
terminating 4-9

loops, using 4-9
do 4-10
for 4-10
if-else 4-12
switch 4-12
while 4-9

M
Math class 5-14
math functions 5-14
math operators

table of 3-8
using 3-7

math package 5-6
member access 3-15
member variables 6-2
memory allocation

getting StringBuffer 5-17
memory management

role of JVM 9-2
method calls 6-3, 10-2
methods 2-5

accessing 10-2
declaration 6-3
defined 6-2
implementation 6-3
main 4-7
overloading 6-11
overriding 6-17
static 4-7
using 3-13

Micro Edition (J2ME) 5-2
multiple inheritance 6-10

replaced by interfaces 6-17
multiple threads 7-1

N
narrowing type conversions 4-8
native code interface 10-2

See also JNI
native keyword 10-2, 11-3
native machine instructions 9-6
networking package 5-11
new keyword 11-3
new operator 6-2
nonprinting characters 4-4

See also escape sequences
NotSerializableException exception 8-3
numeric data types, table of 2-3

O
Object class 5-12
object references 6-2
object streams

read/writes 8-7
ObjectInputStream class 8-2, 8-5

methods 8-7
object-oriented programming 6-1

example 6-4

I n d e x I-5

ObjectOutputStream class 8-2, 8-4
methods 8-5

objects
allocating memory for 6-2
classes vs. 6-2
deallocating memory for 6-2
defined 6-2
deserialization 8-1
referencing 8-7
serializing 8-1

operators
access 3-15
arithmetic 3-7
arithmetic, table of 11-21
assignment, table of 3-10, 11-22
basic 11-20
bitwise 3-11
bitwise, table of 11-23
comparison, table of 3-11, 11-22
defined 3-2
logical or boolean 3-9
logical, table of 11-21
tables of 11-20
ternary 3-12, 11-23
using 3-7

output stream classes 5-24
BufferedOutputStream 5-25
DataOutputStream 5-26
FileOutputStream 5-26, 8-4
OutputStream 5-24
PrintStream 5-24

OutputStream class 5-24
overloading methods 6-11
overriding methods 6-17

P
package keyword 11-3, 11-4
package statements 6-24
packages

accessing class members 6-12
accessing members outside 6-12
declaring 6-24
defined 6-24
importing 6-24
Java, table of 5-3

parent classes 6-8
persistent objects 8-1
platform independence
pointers 10-2
polymorphism 6-17

example 6-18
portability

of Java 9-2

primitive data types 2-2
converting to other primitive types 11-6
converting to reference 11-8
converting to Strings 11-7
defined 5-13

PrintStream class 5-24
private keyword 6-11, 6-12, 11-4
protected keyword 6-11, 6-12, 11-4
prototypes 10-4
public keyword 4-5, 6-11, 6-12, 11-4

R
RandomAccessFile class 5-28
reading data types 8-7
reading object streams 8-7
readObject() 8-5, 8-7
reference data types

converting to other reference 11-14
converting to primitive 11-12

referencing objects 6-2, 8-7
reflections package 5-9
reserved keywords

table of 11-5
resources

freeing stream 8-5
restoring objects 8-1
return keyword 11-3
return statements 4-3
return types 4-3
RMI package 5-10
run() 7-2
Runnable interface

implementing 7-3
runtime environment, Java 9-2

See also JRE

S
saving objects 8-1
scope

defined 3-5
security

applet vs. application 9-5
class loader 9-6
in the JVM 9-2
serialization and 8-7

security manager 9-4
security package 5-11, 9-4
security policy 9-4
SecurityManager class 9-4
Serializable interface 8-2
serialization

defined 8-1
reasons for 8-1

I-6 G e t t i n g S t a r t e d w i t h J a v a

security and 8-7
serializing objects 8-1
setSecurityManager() 9-5
setter methods 6-12
setting thread priority 7-7
short keyword 11-3
single inheritance 6-10
source code

reusing 6-24
SQL package 5-10
Standard Edition (J2SE) 5-2, 11-1
starting a thread 7-5
statements

defined 3-5
static code blocks 10-3
static keyword 4-5, 11-3
stopping a thread 7-6
storing objects to disk 8-1
stream resources

freeing 8-5
streams 8-4, 8-5

input streams 5-21
output streams 5-24
partitioning as tokens 5-29
read/writes 8-7

StreamTokenizer class 5-29
strictfp keyword 11-3
String class 5-14
String data type

converting to primitive 11-10
defined 2-3

StringBuffer class 5-16
strings 4-1

constructing 5-14
handling 4-1, 4-4
manipulating 4-1

subroutines 2-5
See also methods

super keyword 6-11, 11-3
superclasses 6-10
Swing package 5-6
switch keyword 11-4
switch statements 4-12
synchronized keyword 11-3
synchronizing threads 7-7
System class 5-17

T
ternary operator 3-12, 11-23

defined 3-3
test conditions, aborting 4-11
text package 5-5
this keyword 11-3

Thread class
subclassing 7-2

Thread constructors 7-5
ThreadGroup class 7-8
threads 7-1

creating 7-5
customizing run() method 7-2
daemon threads 7-1
groups 7-8
implementing Runnable interface 7-3
lifecycle 7-1
making not runnable 7-6
multiple threads 7-1
priority 7-7
starting 7-5
stopping 7-6
synchronizing 7-7
time-slicing 7-7

throw keyword 11-5
throws keyword 11-5
time-slicing 7-7
tokens 5-29
transient keyword 11-3
transient objects 8-1
try keyword 11-5
type casting 4-2

See also type conversions
type conversions 4-2

implicit casting 4-8
narrowing explicit 4-8
tables of 11-5
widening conversions, table of 4-2

type wrapper classes 5-13
types

reading 8-7
writing to streams 8-5

U
UnsatisfiedLineError exceptions 10-3
utility classes 5-5
utility package 5-5

Enumeration interface 5-18
Vector class 5-19

V
values

comparing 3-11
variable declarations 2-5
variables

defined 2-4
instance 6-2
member 6-2
objects as 6-2

I n d e x I-7

Vector class 5-19
verification

of Java bytecodes 9-3
Virtual Machine, Java 9-1

See also JVM
void keyword 4-5, 11-3
void return type

defined 4-3

W
while keyword 11-4
while loops

using 4-9
widening conversions

table of 4-2
wrapper classes 5-13
writeObject() 8-4, 8-7
writing object streams 8-7
writing to file streams 8-4

X
XML processing 5-9

	Getting Started with Java™
	Contents
	Ch 1: Introduction
	Ch 2: Java language elements
	Terms
	Identifier
	Data type
	Primitive data types
	Composite data types

	Strings
	Arrays
	Variable
	Literal

	Applying concepts
	Declaring variables
	Methods

	Ch 3: Java language structure
	Terms
	Keywords
	Operators
	Comments
	Statements
	Code blocks
	Understanding scope

	Applying concepts
	Using operators
	Arithmetic operators
	Logical operators
	Assignment operators
	Comparison operators
	Bitwise operators
	?:, the ternary operator

	Using methods
	Using arrays
	Using constructors
	Member access
	Arrays

	Ch 4: Java language control
	Terms
	String handling
	Type casting and conversion
	Return types and statements
	Flow control statements

	Applying concepts
	Escape sequences
	Strings

	Determining access
	Handling methods
	Using type conversions
	Implicit casting

	Explicit conversion
	Flow control
	Loops
	Loop control statements

	Conditional statements
	Handling exceptions

	Ch 5: The Java class libraries
	Java 2 Platform editions
	Standard Edition
	Enterprise Edition
	Micro Edition

	Java 2 Standard Edition packages
	The Language package: java.lang
	The Utility package: java.util
	The I/O package: java.io
	The Text package: java.text
	The Math package: java.math
	The AWT package: java.awt
	The Swing package: javax.swing
	The Javax packages: javax
	The Applet package: java.applet
	The Beans package: java.beans
	The Reflection package: java.lang.reflect
	XML processing
	The SQL package: java.sql
	The RMI package: java.rmi
	The Networking package: java.net
	The Security package: java.security

	Ch 6: Object-oriented programming in Java
	Classes
	Declaring and instantiating classes
	Data members
	Class methods
	Constructors and finalizers
	Case study: A simple OOP example
	Class inheritance
	Calling the parent’s constructor

	Access modifiers
	Access from within class’s package
	Access outside of a package

	Accessor methods
	Abstract classes

	Polymorphism
	Using interfaces
	Adding two new buttons
	Running your application

	Java packages
	The import statement
	Declaring packages

	Ch 7: Threading techniques
	The lifecycle of a thread
	Customizing the run() method
	Subclassing the Thread class
	Implementing the Runnable interface

	Defining a thread
	Starting a thread
	Making a thread not runnable
	Stopping a thread

	Thread priority
	Time slicing

	Synchronizing threads
	Thread groups

	Ch 8: Serialization
	Why serialize?
	Java serialization
	Using the Serializable interface

	Using output streams
	ObjectOutputStream methods

	Using input streams
	ObjectInputStream methods

	Writing and reading object streams

	Ch 9: An introduction to the Java Virtual Machine
	Java VM security
	The security model
	The Java verifier
	The Security Manager and the java.security Package
	The class loader

	What about Just-In-Time compilers?

	Ch 10: Working with the Java Native Interface (JNI)
	How JNI works
	Using the native keyword
	Using the javah tool

	Ch 11: Java language quick reference
	Java 2 platform editions
	Java class libraries
	Java keywords
	Data and return types and terms
	Packages, classes, members, and interfaces
	Access modifiers
	Loops and flow controls
	Exception handling
	Reserved

	Converting and casting data types
	Primitive to primitive
	Primitive to String
	Primitive to reference
	String to primitive
	Reference to primitive
	Reference to reference

	Escape sequences
	Operators
	Basic operators
	Arithmetic operators
	Logical operators
	Assignment operators
	Comparison operators
	Bitwise operators
	Ternary operator

	Ch 12: Learning more about Java
	Online glossaries
	Books

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

